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Introduction

In this paper, I study how incorporating economic priors in the specification of a ma-

chine learning model improves the resulting model’s predictive accuracy with respect to

predicting equity returns. I do this by comparing the forecasting accuracy of a neural

network model that imposes several restrictions reflecting recent findings in the financial

economics literature to an alternative neural network model that is much simpler in its

structure. The simple model I benchmark against is the best performing neural network

model, as specified in Gu et al. (2020b). I study the predictability of returns to individual

US equities, 56 long-short characteristic sorted-portfolios, and the value-weighted market

portfolio over multiple horizons.

This paper shows that the stylized facts from the financial economics literature have

an integral role to play in guiding the application of machine learning to finance. This

conclusion stems from the number and nature of improvements one observes when com-

paring my proposed model (the economically restricted model) to the benchmark model.

First, in predicting individual equity returns, I find that forecasts from the benchmark

model explain about 0.58% (out-of-sample R2) of the variation in next month’s returns,

whereas forecasts from the economically restricted model can explain about 0.99%—close

to a two-fold increase.1

Second, I show that investors who employ return forecasts from the economically re-

stricted neural network model enjoy large and robust economic gains. For instance, using

individual equity return predictions’ for the following month, a long-short portfolio that

buys (sells) the 10% highest (lowest) expected return stocks has an annualized average

return of 15.82%. This estimate corresponds to a Sharpe ratio of 0.78, a certainty equiva-

lent of 11.73, and a Fama and French (2018) 6 factor-alpha of 11.05%, all annualized. This

strategy only trades the 500 largest market-capitalized firms each month, thus generating

the gains from the most liquid stocks in the cross-section. The annualized average return

of the strategy falls to about 1% when one uses forecasts from the benchmark model.

This result is particularly interesting because it shows that the economically restricted

model’s improved predictive accuracy is not concentrated among small stocks. Given the

1All results pertain to the out-of-sample period; January 1995 to December 2018.
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small annualized return the strategy produces when one conditions on forecasts from the

benchmark model, it is evident that the benchmark model extracts a non-trivial fraction

of its predictive accuracy from small and difficult to arbitrage stocks (see Avramov et al.

(2020)).

Third, I find that to produce forecasts that robustly generalize beyond individual eq-

uities, restrictions implied by findings from the financial economics literature are crucial.

When predicting returns to the value-weighted market portfolio, forecasts from the eco-

nomically restricted model predict time-series variation in monthly returns as far out as

three years in the future. Additionally, when predicting returns to 56 long-short char-

acteristic sorted portfolios, the aggregate forecasts predict time-series variation in next

month’s returns for 53 of the 56 portfolios. On the other hand, forecasts from the bench-

mark model fail to robustly predict time-series variation in returns to both the aggregate

market and long-short characteristic sorted portfolios.

A natural question one would ask at this point is, “Along which dimension does

the economically restricted model help improve stock return forecasts?” This question

has so far received little attention in this emerging literature. I shed light on this by

decomposing stock return forecasts into two components; a fraction explaining variations

in a level factor (the equally-weighted market return) and a fraction explaining variations

in returns over and above the cross-sectional mean (relative stock returns).2

I find that the improvement in forecasting accuracy primarily comes from predicting

better the relative stock return component. For this component, forecasts from the eco-

nomically restricted model explain about 0.55% of the variations in next month’s returns,

while the benchmark model only explains 0.16%-a more than three-fold improvement.

The models are comparable in their ability to explain variations in the level component.

Forecasts from the economically restricted model explain about 0.43 % of the variations

in the level factor, while forecasts from the benchmark model explain 0.41 %.

Most papers in the literature study cross-sectional return predictability over the next

month or at most over the following year (see Kozak (2019), Gu et al. (2020b), and

Freyberger et al. (2020)). Papers that study returns further into the future, conditional

2I decompose returns (ri,t) into a level factor; captured by the cross-sectional average return,
(N−1t )∑i∈t ri,t and a slope factor; captured by the cross-sectional dispersion around the mean, rRR

i,t =

ri,t − (N−1t )∑i∈t ri,t.
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on what we know today, tend to study exclusively the time-series properties of returns

with annual holding periods. Therefore, this paper is among the first to study monthly

stock return predictability as far as ten years into the future and documents new evidence

on the cross-sectional and time-series properties of conditional expected stock returns

across horizons. The two main results are that 1) stock return predictability decreases

over the horizon and 2) the nature of stock predictability in the short run is very different

from the long-run.

First, stock returns are much more predictable in the short-run than in the long-

run. Forecasts from the economically restricted neural network model can explain about

0.99% (out-of-sample R2) of the variations in next month’s stock returns. However, this

estimate falls to about 0.28% when predicting returns five years into the future and about

0.13% when predicting returns ten years into the future.

Second, the nature of short-run stock return predictability is very different from long-

run stock return predictability. Accounting for the inherent factor structure underpinning

stock returns, I find that a large fraction of the observed stock return predictability across

horizons comes from predicting variations in the equally-weighted market return or level

component in the pool of stocks. When predicting next month’s return, about 43% of the

variation explained (0.43% out of 0.99%) comes from explaining variations in the level

component. For forecasts that pertain to months that are at least one year in the future,

over 95% of the variation explained comes from explaining variations in this component.

To summarize, I find that the forecasts’ ability to explain cross-sectional variation in

returns is only present in the short-run. While in the long-run, stock return predictability

entirely comes from predicting variations in the level component in the pool of stocks.

The empirical asset pricing literature has shown that firm characteristics are corre-

lated with subsequent stock returns, but evidence on how well these characteristics or

combinations thereof proxy for conditional expected returns is scarce (see for example,

Basu (1977), Jegadeesh and Titman (1993), and Sloan (1996)). Measuring relative stock

returns as the stock return in excess of the cross-sectional mean, I find that a one per-

cent relative return forecast on average predicts a 0.97 percentage point increase in next

month’s relative stock return. Similar to the conclusions drawn from the out-of-sample

R2 analysis, I find that this estimate decreases as the horizon increases. In predicting
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the monthly relative stock return realized one-year in the future, this estimate falls to

0.79 and further down to 0.24 when predicting monthly relative returns two years in the

future.

I find similarly robust estimates for the value-weighted market portfolio and long-

short characteristic sorted portfolio returns. On average, a one percent demeaned market

forecast predicts a 1.80 percentage point increase in market return. The estimates are

statistically significant for monthly forecasts for up to three years in the future. A one

percent demeaned long-short portfolio forecast, on average, predicts about a 2.00 per-

centage point increase in long-short portfolio returns. The estimates are statistically

significant for forecasts up to a year into the future.

The findings in this paper are both important and interesting for the following rea-

sons. First, conditional expected returns for multiple future dates are analogous to a

term structure of implied discount rates (cost of capital) conditional on an information

set observed today. These discount rates are of particular importance to firms when

evaluating investment opportunities with cash-flows maturing over multiple future dates.

The proposed model in this paper is one way of using project-specific characteristics ob-

served today as a basis for coming up with consistent (implied) discount rates to help

evaluate such investment opportunities.

Second, the return predictability literature is only beginning to tackle the question of

whether or not long-short characteristic sorted portfolio returns are predictable over time

(see Baba-Yara, Boons, and Tamoni (2018) and Haddad, Kozak, and Santosh (2020)).

Reporting the Sharpe ratio of such portfolios only tells us that the cross-sectional variation

in a characteristic generates an unconditional spread in returns but not whether the

time-series variation in the returns to such a portfolio is predictable. I find that the

economically restricted neural network forecast can predict time-series variation in next

month’s return for over 90% of the long-short portfolios I study. This result is important

because the returns to factor portfolios can be low or negative for prolonged periods

(see Israel et al. (2020)). Having access to conditional expected return estimates for

these portfolios should aid investors in making their portfolio timing decisions. More

generally, improving short- and long-run expected return estimates is essential because

these estimates serve as fundamental inputs in tactical and strategic portfolio decisions,
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respectively.

Finally, Martin and Nagel (2019) consider a world where agents have to condition on

thousands of potentially relevant variables to forecast returns. If agents (investors) are

uncertain about how exactly cash-flows relate to these predictors, then a factor zoo will

naturally emerge. A world not too dissimilar from our own. Bryzgalova et al. (2019) show

that complex non-linearities exist between firm characteristics and stock returns. Taking

these two facts together, agents will need learning algorithms that can efficiently handle

large dimensional predictors while simultaneously learning the non-linearities that exist

therein. Gu et al. (2020b) show that neural networks are the best learning algorithm for

this problem. This paper shows that incorporating economic restrictions in the neural

network design robustly enhances their predictive ability.

Literature

This work is related to the emerging literature in economics and finance using machine

learning methods to answer economic questions that are fundamentally predictive. Sirig-

nano, Sadhwani, and Giesecke (2016) show that deep neural networks are strong pre-

dictors of mortgage repayment, delinquency, and foreclosures. Butaru et al. (2016) use

regression trees to predict the probability of consumer credit card delinquencies and

defaults. Freyberger, Neuhierl, and Weber (2020) use the adaptive group LASSO to

study which subset of 62 characteristics provides incremental information about the cross-

section of expected returns. The spline methodology the authors use cannot easily ac-

commodate higher-order interactions between covariates (characteristics). However, deep

neural networks, the learning algorithm used in this paper, easily approximates higher-

order non-linear interactions between covariates (see Goodfellow et al. (2016)). Chen,

Pelger, and Zhu (2019) estimate the stochastic discount factor using neural networks and

find that a model that bakes in economic restrictions outperforms all other benchmarks in

an out-of-sample setting. Like these authors, I show that designing neural network mod-

els using financial economic priors does generate robust forecasts, although the proposed

models different. The economically restricted neural network model I propose is similar

to the autoencoder model of Gu et al. (2020a). Gu et al. (2020a) primarily study the asset
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pricing implications of their model for next month returns, I study return predictability

across time and portfolios.

This work primarily extends the literature on stock return predictability. I show that

a neural network architecture design that imposes restrictions reflecting findings in the

financial economics literature improves stock return forecasts out-of-sample. Lewellen

(2015) studies expected returns across stocks as a linear function of firm-level charac-

teristics and finds that the forecasts generated by the linear model explain some vari-

ation in returns. The proposed framework in this paper allows for high-dimensional

non-linear interactions between characteristics and also imposes a Lasso penalty to re-

move non-essential return predictors in the information set I condition on. Gu, Kelly,

and Xiu (2020b) show that allowing for non-linear interactions between characteristics

help improve the forecasting accuracy of ML models. Specifically, the authors show that

firm-level characteristics can be combined with macroeconomic variables using different

machine learning methods to predict returns better. I show that the information set we

condition on is not only informative of return realizations for the next month but extends

much further out into the future. This finding is important because Van Binsbergen and

Opp (2019) argue only characteristics that predict persistently generate substantial eco-

nomic distortions. Finally, I show that relative stock return predictability is short-lived.

Specifically, machine learning forecasts for return realizations beyond one year into the

future are no better than a zero forecast in discriminating between high and low expected

return firms; a result that suggests that longer-run discount rates converge across firms

(see Keloharju, Linnainmaa, and Nyberg (2019)).

The results in this paper also contribute to the literature that studies aggregate mar-

ket return predictability. Cochrane (2008) studies market return predictability and pro-

vides evidence that the dividend-yield predicts time-series variation in the equity risk

premium. Goyal and Welch (2008) study market return predictability in the time-series

using macroeconomic variables and show that the historical average market return is a

challenging benchmark to beat. I show that a neural network model that adheres to eco-

nomic theory robustly out-performs the historical equity return in predicting time-series

variation in monthly market returns as far as three years into the future. Engelberg

et al. (2019) aggregate 140 individual firm-characteristics, including the dividend-yield,
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and ask how many of these aggregates can predict market returns. The authors find

that the aggregated cross-sectional variables that appear to be statistically significant in

predicting market returns when examined in isolation are no longer significant in a mul-

tiple testing framework. I find that we can distill the predictive information in individual

firm-characteristics into a single measure of expected stock return using machine learn-

ing methods. Aggregating this single variable into a market forecast predicts time-series

variation in market returns as far as three years (statistically significant at the 5% level)

into the future.

My results also contribute to the stream of literature that studies time-series pre-

dictability of returns to characteristic sorted portfolios. Cohen et al. (2003) predict

returns to the value portfolio. Cooper et al. (2004) and Daniel and Moskowitz (2016)

both study time-series predictability of the returns to the momentum portfolio. Similar

to Haddad et al. (2020), my framework allows me to study a much larger cross-section of

long-short portfolios while entertaining a large dimensional conditioning information set.

Specifically, I contribute to the literature by showing that long-short portfolio forecasts

formed from stock return forecasts generated by a neural network model can predict time-

series variation in 53 of 56 long-short portfolios (32 of 56 are statistically significant at the

5% level). I also show that imposing economic restrictions on the corresponding machine

learning model is essential in producing the forecasts that generalize to the cross-section

of long-short characteristic sorted portfolios.

1 Empirical Framework and Data

In this section, I detail the assumptions underlying the empirical exercise in this paper.

1.1 Factor Model

I assume that stock returns are conditionally priced by a linear combination of J factors,

Ft+1 = [f1,t+1, f2,t+1, ..., fJ,t+1].

Assumption 1. A conditional factor model holds such that:

ri,t+1 = β
′
i,tFt+1 + εi,t+1 (1)
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where ri,t+1 is the stock return of firm i at time t + 1, βi,t is a J × 1 dimensional vector

of conditional factor loadings and εi,t+1 is an independent identically distributed normal

random process, N(0, σi,ε).

My interest in this paper is to learn a set of expected return functions, Et−h+1[ri,t+1],

where h ∈ H = {1,2,3,13,37,61,91,121}, conditional on some information set, It−h+1.

Supposing this is month t, I predict returns for the following month, t + 1, by condition-

ing on the information set It and generate return forecasts with the function, Et[ri,t+1].

To predict returns one year from next month, 1+13, I condition on the information set ob-

served today, It, and generate return forecasts with the function, Et[ri,t+13] = Et−12[ri,t+1].

1.2 Economically restricted model

Guided by economic theory, I introduce the following assumptions to pin down the struc-

tural nature of the expectation functions.

Assumption 2. Expected stock returns are linear in conditional betas and conditional

price of risks:

Et−h+1[β′i,t]Et−h+1[Ft+1] ≈ b∗h(⋅)′ ∗ f∗h (⋅) (2)

where b∗h(⋅) is a function that approximates the time t + 1 expected conditional risk

exposures of firm i and f∗h (⋅) is a function that approximates the time t+1 expected condi-

tional price of risk, all conditional on the information set, It−h+1. The crucial assumption

here is that expected returns is the sum of the product of conditional risk loadings (be-

tas) and the corresponding conditional price of risk. This restriction is standard in the

literature and follows from assuming that the SDF is linear or approximately linear in a

set of unknown parameters.

I can impose this linearity assumption only because I model the conditional price

of risk and conditional beta exposures separately. This separation also allows me to

treat conditioning information more in line with findings in the literature. Specifically,

I treat characteristic realizations as being informative of risk loadings as in Cosemans

et al. (2016), Chordia et al. (2017) and Kelly et al. (2019) and treat the conditional price

of risk as arising from linear combinations of trade-able portfolios formed from sorts on

characteristics similar to factor definitions in Fama and French (1996), Hou et al. (2015)

9



and Stambaugh and Yuan (2017).

1.2.1 The conditional price of risk function

The conditional price of risk function, f∗h (⋅), is initialized with a (P + 2)-dimensional

column vector of portfolio average returns, r̄p,t−h+1, when predicting returns for time

t+ 1. This vector comprises an expanding window average return of long-short portfolios

formed from sorts on the P firm-level characteristics. I concatenate this vector with the

expanding window average return of the equally-weighted market and the risk-free assets.

I compute all expanding window averages using portfolio returns starting from January

1965 up to time t − h + 1. I define the conditional price of risk function as:

Et−h+1[Ft+1]′ = r̄p,t−h+1W0,h + b0,h (3)

where W0,h ∈ R58×3 and b0,h ∈ R1×3 are unknown parameters to be estimated3. This

parameterization allows for the pricing function to be dense in the space of portfolio and

security returns (58 average returns) and simultaneously remain sparse in pricing factor

(3 latent factors).

From Kozak et al. (2020), we know that a handful of latent factors are enough to

explain a significant fraction of the variations observed in realized returns. Guided by

this finding, I set the number of pricing factors to 34. It is worth mentioning that the

small number of factors I impose does not restrict the resulting approximator to the

same space as a three principal component (PC) model. This is because factor loadings

in Equation (2) are time-varying as opposed to the statistic loadings in a PC model.

Similar to Kelly et al. (2019) and Gu et al. (2020a), I find that restricting the model to

one or two latent factors is too restrictive.

I do not allow for non-linear interactions between portfolio returns in determining the

factor returns because I require the factor returns to be spanned by the returns of the

underlying 58 portfolios. I construct each long-short characteristic sorted portfolio by

3For each forecasting horizon in H, we estimate a different expectation function denoted by the
subscript h.

4Picking J between 3 and 10 does not qualitatively change the results but increases the time it takes
the models to converge
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fixing portfolio weights as the rank-normalized characteristic realizations at some time

t5. I then go long one dollar and short another dollar. All the long-short portfolios I

consider are therefore spanned by the stocks in the cross-section.

1.2.2 The expected conditional beta function

The expected conditional beta exposure function, b∗h(⋅), is initialized with a P -dimensional

vector of rank-normalized firm characteristics, pi,t, when predicting returns for time t+h.

I assume that characteristic realizations at time t are informative of their time t + h

realizations.6. I approximate the beta exposures as:

Y1,h = ψ(pi,t−h+1W0,h + b0,h) (4)

Y2,h = ψ(Y1,hW1,h + b1,h) (5)

Et−h+1[βi,t]′ = Y2,hW2,h + b2,h (6)

where W0,h ∈ R56×1024, W1,h ∈ R1024×1024, W2,h ∈ R1024×3, b0,h ∈ R1×1024, b1,h ∈ R1×1024

and b2,h ∈ R1×3 are unknown parameters to be estimated. ψ is the relu non-linearity;

ψ(⋅) = max(y,0). This parameterization of the beta exposure function allows me to

project the 56 firm-characteristics into a higher dimensional (1024-dimensional) feature

space where new features are easier to learn and project the resulting feature set back to

the 3-dimensional latent pricing factor space (see Recanatesi et al. (2019)). By allowing

the nodes in the first layer of the model to be greater than the size of the input vector,

I also maintain the universal approximation property of the deep neural network model

(see Johnson (2019)).

Even though I initialize all conditional beta exposure functions with the same char-

acteristic vector, the resulting J ×1 vector of conditional betas can differ across horizons.

To see this, consider the relation between the momentum characteristic and expected

returns. Momentum is positively related to realized returns for time period t + 1 but

negatively related to realized returns for time period t + 13 (the reversal characteristic).

Therefore, the learned relationship between the same characteristic and realized returns

5I rank-normalize all firm characteristics in a cross-section at time t to the interval [-1,1]
6Given that some characteristics are highly persistent, this is not a controversial claim (see Baba-Yara

et al. (2020)) Replacing the time t realizations with rolling window means does not change the results.
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at different horizons by the neural network model will be different.

In the asset pricing literature, betas (risk loadings) are mostly specified as uncon-

ditional scaling functions that load on factor portfolio returns. Although this parame-

terization restricts the resulting model, it is still preferred to the conditional alternative

because it is easier to estimate. Given that I estimate most of the unknown parameters

of the model using stochastic gradient descent, I do not pay a steep estimation cost by

preferring a conditional beta model to an unconditional model.

Additionally, by allowing for beta to be time-varying, the resulting predictive model

is much more general in that beta responds to evolving firm characteristics. Consider a

growth firm in the initial part of our sample transitioning to a value firm by the end of

the sample. By allowing firm characteristics to inform conditional betas, the firm’s risk

loading (beta) on a particular factor can similarly transition from a low value to a high

value across these two distinct regimes. Compare this to the unconditional beta model,

which would have to be a scaler that captures the average risk loading of both the growth

and value phases of the firm.

Besides the beta conditionality, I also allow for nonlinear interactions between firm

characteristics via the ψ non-linearities. This specification is motivated by recent findings

in the literature that shows that non-linearities between firm characteristics matter in

explaining variations in firm returns. Bryzgalova et al. (2019) find that allowing for non-

linearities through conditional sorting improves the resulting mean-variance frontier in

the space of characteristic sorted portfolios. Gu et al. (2020a) find that allowing for non-

linearities results in an autoencoder asset pricing model that prices 87 out of 95 factor

portfolios they consider.

1.3 A simple neural network model

I consider a simpler forecasting model that approximates the product of expected con-

ditional price of risk and expected risk loadings with minimal assumptions coming from

economic theory. Specifically, I estimate:

Et−h+1[ri,t+1] ≈ g∗h(zi,t−h+1) (7)
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where g∗h(⋅) is some real-valued deterministic function of P +M real variables, zi,t−h+1.

zi,t−h+1 = [pi,t−h+1 ∶ qt−h+1], where pi,t−h+1 is firm specific and qt−h+1 is the same across firms.

I specify pi,t−h+1 as a 56-vector of firm level characteristics, the same as in the expected

conditional beta exposures function, and concatenate it with an M-dimensional, qt−h+1,

aggregate variables as in Gu et al. (2020b).

The difference between this forecasting model and the one I propose is that it does not

model the conditional beta exposures and conditional price of risk functions separately.

It approximates the expected return function directly while skipping all intermediary

restrictions. This is the best performing machine learning model in Gu et al. (2020b) and

so serves as a natural benchmark for the more restricted model I propose. It is simpler

in that it makes very little structural assumptions about how the different constituents

of the information set interact in informing return expectations.

Following Gu et al. (2020b), I approximate Equation (7) using a three-layer feedfor-

ward neural network, which is defined as7:

Y1,h = ψ(zi,t−h+1W0,h + b0,h) (8)

Y2,h = ψ(Y1,hW1,h + b1,h) (9)

Y3,h = ψ(Y2,hW2,h + b2,h) (10)

Et−h+1[ri,t+1] = Y3,hW3,h + b3,h (11)

where W0,h ∈ R64×32, W1,h ∈ R32×16, W2,h ∈ R16×8, W3,h ∈ R8×1, b0,h ∈ R1×32, b1,h ∈ R1×16,

b2,h ∈ R1×8 and b3,h ∈ R are unknown parameters, θ, to be estimated. ψ is a non-linear

function (relu) applied element-wise after linearly transforming an input vector, either

zi,t−h+1 or Yk,h.

Despite its flexibility, this simple forecasting model imposes some important restric-

tions on the estimation problem. The function, g∗h(⋅), depends neither on i nor t but

only h. By maintaining the same functional form over time and across firms for some

time-period h, the model leverages information from the entire firm-month panel. This

restriction significantly reduces the number of parameters I need to estimate and increases

7Feedforward networks are the main building blocks of much more complicated neural networks.
Among the five feedforward neural network models that Gu et al. (2020b) study, the three-layer deep
neural network out-performs along several dimensions.
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the resulting estimates’ stability. This restriction is loose in that I re-estimate g∗h(⋅) ev-

ery two years, which means that each subsequent 24 month set of stock forecasts for

some particular horizon h comes from a slightly different approximation of g∗h(⋅). Finally,

the specification also assumes that the same information set is It is relevant for making

predictions for all horizons in H.

1.4 Loss Function

I estimate Equation (2) and Equation (7) by minimizing the mean squared error loss

function with an l1 penalty:

L(θ) = (NtT )−1
Nt

∑
i=1

T

∑
t=1

(Rt+1 − R̂t+1)
2
+ λ1∣∣θ∣∣1 (12)

where Rt+1 is a vector of stock returns for time t, R̃t+1 is a vector of predicted returns

for all Nt firms in the cross section at time t, θ is the vector of model parameters. I

minimize the empirical loss function over a pool of firm-month observations. I choose

hyper-parameters such as λ1 via a validation set. All hyper-parameters are detailed in in

Appendix C.

1.5 Estimation

I use the AdaBound learning algorithm from Luo et al. (2019) to estimate the unknown

parameters (θ)8.

In addition to the l1 penalty, I use batch normalization to help prevent internal co-

variate shifts across layers during training, (see Ioffe and Szegedy (2015)). I train the

model on a batch size of randomly sampled 10000 firm-month observations per iteration.

I estimate the model over 100 epochs, where an epoch represents a complete cycle through

all of the training data. I stop training before the 100th epoch if the validation set does

not increase after five subsequent epochs. Further details of the learning algorithm are

provided in Appendix C.

8AdaBound leverages the rapid training process of the more popular adaptive optimizers such as
Adam, (Kingma and Ba, 2014), and generalizes like the classic stochastic gradient descent optimizer.
Also, AdaBound has theoretical convergence guarantees which other optimizers such as ADAM lack.
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1.5.1 Sample Splitting

The dataset starts from January 1965 and ends in December 2018. I employ a rolling

window estimation scheme by splitting the dataset into three parts; training, validation,

and testing.

[Insert Figure 1 about here]

In predicting returns for month t + 1 using information available up to time t, I

estimate the model using 15 years of data starting from January 1975 and ending in

December 1989. I choose hyper-parameters by comparing estimated model performance

over a validation dataset starting from January 1990 to December 1994. I use the optimal

model to make one-month ahead return predictions from January 1995 to December 1996.

Figure 1 illustrates this exercise. I move the training, validation, and testing set forward

by two years and repeat the process.

In predicting returns for month t + 2 using information available up to time t, I

estimate the model using 15 years of data starting from December 1974 and ending s

in November 1989. I choose optimal hyper-parameters by comparing estimated model

performance over a validation dataset from December 1989 to November 1994. I use the

optimal model to make two-month ahead predictions starting from December 1994 to

November 1996. This ensures that when comparing model performance across horizons,

I am always comparing returns realized between January 1995 to December 1996, thereby

aligning return realization dates across prediction periods, H. Similar to t+1, I move the

training, validation, and test set forward by two years and repeat the process.

I always predict returns for the out-of-sample period; January 1995 to December

2018. As discussed above, I do this by shifting the conditioning information further into

the past. This allows me to maintain the same training, validation and testing data

size (in months) across horizons. Although this allows me to compare forecasts from

different horizons for the same out-of-sample period, the subset of firms I am comparing

across horizons is different. This is because firms enter and exit the CRSP file over time.

Consider two different horizon forecasts for the month January 1995. The one month

ahead forecast will condition on firms alive in December 1994. Whereas, the five year-

ahead monthly forecast will condition on firms alive in December 1989. The trade-off I
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make is to align my setup more with a real-time setting, where agents form expectations

for all future horizons in H, conditional on what they observe at the time.

I choose to estimate monthly forecasts because this allows us to bring the standard

financial econometric tools to the problem and side step the econometric issues inherent

in using compounded returns.

1.6 Data

I obtain monthly market data for US common stocks traded on AMEX, NASDAQ, and

NYSE stock exchanges from CRSP. I match market data with annual and quarterly

fundamental data from COMPUSTAT. I build a set of 56 firm-level characteristics from

this panel.9 The characteristic definitions are from Freyberger et al. (2020) and Green

et al. (2017). I obtain the one-month risk-free rate from Kenneth French’s website. To

avoid forward-looking bias, I follow the standard practice in the literature and delay

monthly, quarterly and annual characteristics, by a month, four months, and six months

respectively (similar to Green et al., 2017; Gu et al., 2020b). To be included in the sample

for some month t, a firm must have at least 30 non-missing characteristic observations.

I rank-normalize the characteristics to the interval [-1,1] and replace missing values with

zero.

The aggregate variable set, qt, I use is from Goyal and Welch (2008), namely the

S&P 500 dividend-to-price ratio, the S&P 12-month earnings-to-price ratio, the S&P 500

book-to-market ratio, net equity expansion, stock variance, the term spread, the default

spread, and the treasury-bill rate10. I condition on this set of aggregate variables to keep

the simple model in-line with the specification in Gu et al. (2020b). Conditioning the

simpler model on the same aggregate variables in as in Equation (3) leads to qualitatively

poorer results.

9The details of the characteristics are provided in Table B.1.
10I would like to thank Amit Goyal for making this series available on his website.
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2 Neural network forecasts in the cross-section of

stocks

This section examines how incorporating economic theory in designing a neural network

forecasting model helps improve return forecasts. I do this by comparing the forecasting

accuracy of the economically restricted neural network model to that of the simple model

in the cross-section of stocks across horizons. Additionally, I decompose the forecasts of

both models to shed light on the cross-sectional and time-series prediction properties of

the models.

The standard statistic I use to assess the predictive performance of these forecasts is

the out-of-sample R Squared (R2
OOS), which is defined as:

R2
OOS = 1 −

∑(t) ∈ oss(Rt − R̃t,1)
2

∑(t) ∈ oss(Rt − R̃t,2)
2

(13)

where Rt is the time t vector of realized stock returns, R̃t,1 is a vector of forecasts from

model 1 and R̃t,2 is a vector of forecasts from model 2. Intuitively, the statistic compares

the forecasting error of model 1 ((Rt − R̃t,1)
2), to that of model 2 ((Rt − R̃t,2)

2). If the

forecasting error of model 1 is smaller than that of model 2, then R2
OOS will be positive.

A positive R2
OOS therefore means that forecasts from model 1 improve upon forecasts

from model 2.

I formally test the null hypothesis that forecasts from model 1 are no different from

forecasts from model 2 in explaining variations in stock returns using the Clark-West

(2007) test with Newey-West (1987) adjusted standard errors.

2.1 Can neural networks predict stock returns across horizons?

To answer this question, I define forecasts for model 1 as forecasts from the neural network

models. I compare each models forecast to a zero prediction benchmark; R̃t,2 = 0. The

results from this exercise answer the question, ”How much variation in realized returns

are explained by the neural network forecasts?”

[Insert Table 1 about here]
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Panel A of Table 1 reports results for both the economically restricted model and the

simple model. All the R2
OOS estimates are positive and statistically significant across

horizons. In general, both models’ ability to explain variations in stock returns monoton-

ically decrease the further into the future the forecasts pertain. Whereas the economically

restricted model can explain about 0.99% of the variation in next month’s return, it can

only explain about 0.13% of the variation in ten-year returns. Similarly, the simple model

can explain about 0.58% of the variation in next month’s return, and this falls to 0.18%

of the variations in return ten years in the future.

Comparing the models on the variations in returns they explain in next month’s

return, the economically restricted model explains close to twice the variation explained

by the simple model; 0.99% against 0.58%. In explaining variations in stock returns

further in the future, the simple model explains a slightly larger fraction; 0.18% against

0.13%.

2.2 Disentangling the composite R2
OOS

The R2
OOS tells us how much variation in returns the forecasts from model 1 explain

when the benchmark model (model 2) is a zero prediction model. The results show that

both models can predict stock returns across horizons. However, the R2
OOS, as defined

above, fails to tell us along which dimension of stock returns these estimates forecast

well. The forecast may be predicting stock returns well because they predict the level

factor in stocks. Or they could additionally be predicting time-series variation in the

cross-sectional dispersion in stock returns. Given that a strong factor structure holds in

the pool of stocks, it is instructive that we disentangle the R2
OOS to shed light on this.

I assume a two-factor structure holds for the stock return forecasts. I fix the first

factor as the equally-weighted market forecast and allow the second factor to subsume all

other priced factors in the cross-section11. This parameterization allows me to decompose

return forecasts from some model m for a firm i at some time t into two parts:

rm,i,t = (N−1
t )∑

k∈t
r1,k,t + r

RR
m,i,t (14)

11Kozak et al. (2020) show that an asset pricing model of a similar form explains a significant fraction
of the variations in returns
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where (N−1
t )∑k∈t r1,k,t captures the cross-sectional mean forecast of model m and rRRm,i,t

captures the cross-sectional variation in forecasts across firms. The return to each firm i

(rm,i,t) is therefore made up of the cross-sectional level factor ((N−1
t )∑k∈t r1,k,t) and firm

specific relative return (rRRm,i,t).

I further decompose the relative forecast (rRRm,i,t) into an unconditional component

(µRR1,i ) and a conditional component (r̃RR1,i,t). Specifically, I decompose rRRm,i,t as follows:

rRRm,i,t = µ
RR
m,i + r̃

RR
m,i,t (15)

where r̃RR1,i,t is mean zero (by construction) and captures the relative (residual) time-series

forecasts of model m. µRR1,i is the average firm i forecast over the out-of-sample period

and captures the unconditional relative (residual) stock forecast. This parameteriza-

tion allows me to study the time-series predictability of relative stock returns absent

the unconditional component. See section D in the Appendix for more details on the

decomposition.

Panel B of Table 1 reports the results for the decomposition of the R2
OOS against

a zero prediction benchmark. For both models, the ability of their forecasts to explain

time-series variation in relative stock return is only present for short-run months. Neither

model can explain time-series variation in relative stock returns realized beyond one year

in the future.

However, the amount of time-series variation in relative stock returns the models can

explain is very different. Whereas the simple model explains about 0.20% of time-series

variation in next month’s relative stock return, the economically restricted model explains

about 0.71%, a more than three-fold improvement. In predicting monthly relative stock

returns one year in the future, the simple model explains about 0.03% of time-series

variation in relative stock returns against 0.08% for the economically restricted model.

For both models, a large fraction of the reported composite R2
OOS comes from ex-

plaining variations in the level factor in stock returns. For the economically restricted

model, about 40% of the composite R2
OOS (0.43% out of 0.99%) comes from explaining

variations in next month’s level factor. For the simple model, this figure is 70% (0.41 out

of 0.58%). For all other future forecasting periods, more than 90% of the composite R2
OOS
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comes from the models’ ability to explain variations in level factor, with little to negative

(R2
OOS) contributions coming from explaining variations in relative stock returns.

The results show that intermediate and long-run forecasts from the neural network

models are very different from short-run forecasts. Whereas short-run predictions can

discriminate between high and low expected return stocks (relative stock returns) in

addition to forecasting the level factor, intermediate and longer-run forecasts only explain

variations in the cross-sectional average return (level factor).

2.3 An alternative benchmark

Results from the decomposition of the R2
OOS with respect to the zero prediction bench-

mark show that the dominant factor that the forecasts are predicting is the equally-

weighted market return. This result suggests that an alternative benchmark that does

reasonably well along this particular dimension of returns should be tougher for the neu-

ral network forecasts to beat. From Goyal and Welch (2008), we know that one such

example is the historical average market return. I define this benchmark’s t+ h stock re-

turn forecast as the time t average equally-weighted market return computed using data

from 1926.12

[Insert Table 2 about here]

The results are reported in Table 2. For short-run months, I find a more than 30%

reduction in the compositeR2
OOS compared to the zero-prediction model. From this result,

we can conclude that the historical average market return is a challenging benchmark,

even in the pool of individual stocks. In the long-run, I find an increase in the composite

R2
OOS compared to the zero-prediction model. This result means that the zero-prediction

model remains the tougher benchmark for longer run returns. This finding is explained

by the fact that more than 40% of firms alive at any period t fall out of the sample by

t + 60. Thus, the historical average market return computed as a function of firms alive

at some t, will be a poor estimate of the longer-run unconditional average return.

Comparing the R2
OOS estimates of the simple model to the economically restricted

model across horizons and benchmarks, it is evident that economic restrictions generally

12Results for other alternative models are in the Table IA.1 of the Internet Appendix.
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improve the forecasts. In predicting next month’s return, the economically restricted

model has an R2
OOS of about 0.64%, whereas the simple model has an R2

OOS of about

0.20%. In predicting returns ten-years into the future, the economically restricted model

has an R2
OOS of 0.62%, and the simple model has an R2

OOS of about 0.55%.

Taken together, the results in this section show that incorporating economic restric-

tions improves the ability of a neural network model to predict stock returns. This im-

provement is most evident in the ability of the forecasts to explain time-series variations

in relative stock returns over the short-run.

3 Predicting market and long-short portfolio returns

The previous section shows that incorporating economic theory in designing a neural

network architecture improves return forecasts in the cross-section of stocks. Since indi-

vidual stock forecasts can easily be aggregated to forecast market returns and returns to

long-short characteristic sorted portfolios, it is natural to ask if the model that incorpo-

rates economic theory generalizes better along these dimensions than the simple model.

That is the central question I answer in this section.

3.1 Can the forecasts predict market returns?

To answer this question, I define the market forecast as the value-weighted monthly stock

forecast for period t+h and define the market return as the value-weighted monthly cross-

sectional average stock return of firms in the CRSP file at time t+h.To capture the pure

effect of different forecasts, I always use market-caps from time t but allow the forecasts

to vary across horizons. I compute the R2
OOS with respect to two benchmarks; a zero-

prediction model and the historical average-market return.

[Insert Table 3 about here]

The R2
OOS of the neural network against a zero prediction benchmark tells us how much

variation in market returns the forecasts explain. The results in Table 3 show that

both models can robustly explain market returns across all horizons, I consider. The

economically restricted model can explain a larger fraction of the variation in market
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returns compared to the simple model, especially for short-run to intermediate horizons

(up to three years). For example, in predicting next returns, the economically restricted

model explains about 5.35% of the variation in market returns while the simple model

explains about 2.05%.

Decomposing the R2
OOS into a time-series variation and an unconditional return com-

ponent shows that less than 35% of the variation explained in market returns across

horizons pertains to the ability of both models to explain time-series variations in re-

turns. For instance, in predicting market returns one year into the future, 1.51% of the

4.90% composite R2
OOS comes from the ability of the economically restricted model fore-

casts’ to explain time-series variation in market returns. The rest comes from matching

the unconditional market return in the out-of-sample period.

Focusing on the more challenging historical average market return benchmark, we see

that the simple model’s market return forecasts offer no improvements. For all horizons

and dimensions of market returns, this model fails to improve upon the historical average

market forecast. The story is different for the economically restricted model. This model

fails to improve upon the historical average market forecast in predicting the uncondi-

tional market return in the out-of-sample period. However, its ability to out-perform

the historical average market return forecast in predicting time-series variation in market

returns is large and statistically significant at the 5% level up to three years in the future.

3.2 Can forecasts predict long-short portfolios returns?

The positive and statistically significant R2
OOS in rows 1 and 3 in panel B of Table 1

suggest that both neural network forecasts should be able to forecast returns to long-

short portfolios. This is because this dimension of the decomposed R2
OOS is related to

predicting time-series variation in relative stock returns. And this translates into returns

of long-short portfolios. However, we can not make conclusive statements from the results

in Table 1 because the R2
OOS are computed with respect to the entire cross-section of

stocks, whereas long-short portfolios only buy and sell a fraction of stocks that are most

of the time in the tails of the return distribution. Additionally, long-short portfolios are

mostly value-weighted as and not equally-weighted as in Table 1.
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To answer the question, I sort stocks on the five characteristics in the Fama and

French (2018) factor model; book-to-market, investment, size, operating profit, and mo-

mentum13. For characteristics computed from balance sheet or income statement vari-

ables, I update them at the end of June of year s using the characteristic observations

from the fiscal year-end s − 1. For characteristics computed only from CRSP variables, I

update them at the end of each month and re-balance accordingly. I form decile portfolios

from the sorts and value-weight to reduce the effect of small stocks. The return (forecast)

to the long-short portfolio is the value-weighted return (forecast) of portfolio ten minus

the value-weighted return (forecast) to portfolio one.

Similar to analyzing market return predictability, I decompose the (R2
OOS) to inves-

tigate time-series and unconditional forecasting accuracy of the long-short characteristic

portfolio forecasts.

[Insert Table 4 about here]

Results for the simple neural network model are reported in Table 5. The alternative

model is the zero-prediction model. Even against this much weaker benchmark, the simple

model fails to robustly explain any variation in returns to long-short characteristic sorted

portfolios. For almost all reported horizons and across all five long-short portfolios, the

R2
OOS is negative. For the few horizons and portfolios where the estimate is positive, it

is seldom statistically significant.

[Insert Table 5 about here]

Table 5 reports results for the economically restricted model. For this model, the bench-

mark is the historical average long-short portfolio return computed using data from 1964.

The model does a much better job predicting returns to long-short portfolios than the

simple model, despite the more challenging benchmark. Focusing on forecasts for time

t + 1, I find positive R2
OOS for all five long-short portfolios as against two for the simple

model. For four of these five portfolios, the R2
OOS is statistically significant at the 5 %

level. The decomposed R2
OOS shows that the forecasting power of the economically re-

stricted model is driven by its ability to better predict time-series variation in returns to

these long-short portfolios.

13To be included in a sort, a firm must have a neural network forecast and non-missing observations
for return and characteristic being sorted on.
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To show how pervasive this finding is, I expand the universe of long-short portfolios

to all 56 characteristics that I condition on in the beta function (Equation (4)) and focus

on forecasts for month t + 1. Figure 2 reports the results.

[Insert Figure 2 about here]

In panel A, I find that 53 (32) of the 56 long-short portfolios have positive (and statis-

tically significant) composite R2
OOS. Similar to the results above, most of the composite

R2
OOS is driven by the forecasts’ ability to predict time-series variation in returns to

long-short portfolios. In panel B, I find that for 53 of the 56 long-short portfolios the

neural network forecasts improve upon the the benchmarks ability to predict time-series

variation in returns. For 31 portfolios, this improvement is statistically significant at the

5%.

[Insert Figure 3 about here]

Moving beyond month t + 1 forecasts, I report results for other horizons in Figure 3.

To keep things compact, I only report the fraction of long-short portfolios with positive

composite R2
OOS, positive contributions coming from forecasting time-series variation in

returns, and positive contributions coming from predicting the unconditional long-short

portfolio return. Panel B reports the fractions that are both positive and significant.

I observe that although the neural network forecasts predict a majority of long-short

portfolio returns in short-run months, the fraction that is significant precipitously drops

to zero when I use forecasts older than three months. From this, I conclude that the more

timely the information set I condition, the more accurate the forecasts predict time-series

variations in returns to long-short portfolios.

The results in this section show that machine learning guided by economic theory can

lead to significant improvements in predicting returns that robustly generalize beyond

the cross-section of stocks. Specifically, such a model can predict time-series variation in

monthly market returns up to three years into the future. Additionally, the model can

predict time-series variation in next month returns for 53 (32 are statistically significant)

out of 56 long-short portfolios.
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4 Neural network forecasts and conditional expected

returns

The previous sections show that the economically restricted model explains significant

variation in stock returns. This ability generalizes to market returns and long-short port-

folio returns. This section analyzes how well the economically restricted model forecasts

line up with conditional expected returns across firms, portfolios, and time.

The standard tool in the literature used in this specific analysis is time-series pre-

dictive regressions (see among others Cochrane (2008), and Lewellen (2015)). The slope

coefficient from regressing demeaned forecasts on returns is informative of how well the

forecasts line up with conditional expected returns. We are interested in predictions

that get the conditional direction of returns right. If the slope coefficient is positive and

statistically different from zero, then it fulfills this requirement. Additionally, we are

interested in unbiased return forecasts, that is, models for which the slope coefficient is

indistinguishable from one. For such models, a one percent forecast on average translates

into a one percent return.

[Insert Table 6 about here]

Panel A of Table 6 report results from regressing demeaned relative stock returns on

realized stock returns. The results generally confirm the conclusions from the decomposed

out-of-sample R2 analysis. For the short-run months, t + 1 up to t + 13, I can reject the

null hypothesis that the forecasts fail to predict time-series variation in relative stock

returns. This is because the 95% confidence interval of the slope coefficient is strictly

positive. For t + 1, the forecasts are unbiased because the 95% confidence interval of

the slope coefficient includes one. Specifically, a one percent relative stock forecast on

average translates into a 0.97 percentage point increase in next month’s realized relative

stock return. The model over predicts time-series variation in relative stock returns for

all other short-run months because the confidence intervals are strictly less than one but

positive.

From these results, we can conclude that the model’s forecasts line up well with

expected stock returns for the next month’s returns but over-predict stock returns for all
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other months.

Panel B of Table 6 shows that the market forecasts, up to intermediate-term months,

on average, do line up with expected market returns. For months t + 1 up to t + 37,

the slope coefficients from regressing demeaned market forecasts on market returns are

positive and statistically different from zero. The estimates are around 1.50, meaning

a one percent market return forecast translates into a 1.50 percentage point increase in

market return. And the 95% confidence interval of the slope coefficient includes one for

these specific monthly forecasts.

Panel C of Table 6 reports results for long-short portfolios. Slope coefficients for

months t+1, t+3, t+13 are positive and statistically different from zero. This means the

aggregate neural network forecasts from the economically restricted model can predict

time-series variation in returns to long-short portfolios for short-run months. These

forecasts for long-short portfolios do not generally line up well with conditional expected

returns. A one percent forecast on average translates into about a 2 percentage point

realized return to the typical long-short Fama and French (2018) 5 model characteristic

sorted portfolio. We cannot reject the null hypothesis that the slope coefficients for t + 1

and t + 3 are unbiased. However, we can reject this null for t + 13. Forecasts for this

month on average under-predict conditional expected returns to long-short portfolios.

5 Optimal Portfolios

This section introduces several optimal trading strategies that highlight the practical use-

fulness of the neural network forecasts. We show that an investor using these forecasts

in a pseudo-real-time setting over the out-of-sample period enjoys significant improve-

ments measured by average returns, Sharpe ratios, risk-adjusted returns, and certainty

equivalents.

I define the certainty equivalent with respect to an investor with a mean-variance

utility function and a risk aversion parameter of 2. Specifically, I compute the certainty

equivalent return of a strategy as:

CE = r̄ph −
γ

2
σ2
p,h (16)
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where σp,h is the sample standard deviation of the strategy. The certainty equivalent can

be interpreted as the risk-free return that a mean-variance investor with a risk-aversion

coefficient of γ would consider equivalent to employing this strategy. Alternatively, it can

be viewed as a fee that an investor is willing to pay to use the information inherent in

our forecast. I report the certainty equivalent annualized and in percentages.

5.1 Optimal timing strategies

I consider a strategy that times a risky security by levering up and down the position in

the security based on whether conditional expected returns are high or low. The previous

section showed that the forecasts from the economically restricted neural network model

explain time-series variation in returns for most of the portfolios we consider. Therefore,

we should expect these forecasts to be informative of when to lever up and down based

on return expectations for the future.

For each month, t, I use the conditional expected return forecast from the economically

restricted neural network model to calculate the Markowitz optimal weight to be invested

in the risky asset as:

wt,h =
r̃t,h − r

f
t+1

γσ(r̃1∶t−1,h)
(17)

where γ is the risk aversion coefficient, which I set to 2. I fix the conditional standard

deviation estimate (σ(r̃1∶t−1,h)) at an annualized value of 15 % across securities because of

two main reasons; 1) to remove the impact of volatility timing from the exercise (see ?)

and 2) because the forecasting model does not produce a conditional standard deviation

estimate. At the end of each month, I compute the timing portfolio return as:

rpt,h = wt,hrt+1,h − (1 −wt,h)r
f
t+1 (18)

and iterate until the end of the out-of-sample period, December 2018.
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5.1.1 The optimal market timing portfolio

The first trading strategy I consider tries to time the value-weighted market return by

deciding how much to invest between the market and a risk-free asset using the aggregated

forecast for the market. I restrict the market to the 500 largest market capitalized firms

at each time t. For each month t, the strategy invests wt,h in the value-weighted market

and 1 −wt,h in the risk-free asset.

[Insert Table 7 about here]

Panel A of Table 7 reports the results. A buy and hold strategy that is fully invested in

the market over the sample period makes a annualized average return of 10.39 % with a

certainty equivalent of 8.18. The return to this strategy is fully explained by the CAPM

and the Fama and French (2018) 5 factor model. A timing strategy that uses the most

recent market forecasts, t + 1, earns an annualized average return of 17.21 % with a

certainty equivalent of 12.86. Timing the market with predictions that are a month old,

t+2 to two years old, t+25 all out-perform the buy and hold strategy. Generally, the more

timely the forecasts are, the higher their accuracy in predicting time-series variation in

market returns. We can see this from the higher certainty equivalents and average returns

for periods t + 1 and lower estimates for much older forecasts such as t + 121.

5.1.2 The optimal characteristic timing portfolio

The second timing strategy I consider tries to time an equally-weighted portfolio of book-

to-market, size, investment, profitability, and momentum long-short portfolios. For each

month t, the strategy invests wt,h in this equally-weighted portfolio and 1 − wt,h in the

risk-free asset14.

Panel B of Table 7 reports the result for the timing strategy. Similar to previous

results, I find that the spread in returns generated by the timing strategy is strongest

when the forecast is much closer to the re-balancing month t. Forecasts that are older than

two years to the date of re-balancing generate negative spreads. Characteristic timing,

like all other strategies considered in this section, requires timely information. The most

14Although the portfolio we are timing is equally-weighted, the individual long-short characteristic
sorted portfolios are all value-weighted.
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timely forecast t+1 almost triples the buy and hold certainty equivalent, average returns,

and alphas.

5.1.3 Timing individual characteristic sorted portfolios

The third timing strategy I consider tries to time individual value-weighted portfolios

formed from sorts on the characteristics I condition on. The time t weight wt,h invested

in each portfolio is determined as in the other timing strategies. I only report results for

the t + 1 forecasts for the sake of space..

[Insert Figure 4 about here]

Panel A of Figure 4 reports the annualized average return of the difference in returns

between the timing portfolio and a buy and hold variant. For 54 of the 56 long-short

portfolios, timing leads to an improvement in average returns. For 23 of the 56, this

improvement is statistically significant at the 5% level. 37 of the 56 portfolios show a

greater than 5% improvement in annualized returns. Panel B reports the Sharpe ratio of

the difference in returns between the timing portfolio and the buy and hold. For 46 of

the 56 long-short portfolios, the increase in the annualized Sharpe ratio is at least 0.20

units. Finally, in Panel C, I report the alpha from regressing the timing portfolio returns

on the Fama and French (2018) 6 factor model. For 34 of the 56 portfolios, the timing

portfolio returns are not fully explained by this asset pricing model.

The results from this timing exercise show that the neural network forecasts predict

well time-series variation in relative stock returns for short-run months. And this predic-

tive ability strongly generalizes to predicting time-series variation in long-short portfolios.

Remember that long-short portfolios zero out the level factor in stocks by construction.

So, forecasts that predict stock returns well only because they predict the level factor

cannot predict return variations in long-short portfolios.

5.2 Optimal rotation strategies

The alternate set of strategies that I consider rotates across securities in the cross-section

of stocks and long-short characteristic sorted portfolios. Strategies of this type allow us
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to gauge how accurately the relative stock return forecasts’ discriminate between high

expected return stocks and low expected return stocks in the cross-section.

For each period t, I sort all securities in a particular cross-section on their forecasted

return, buy (sell) the top (bottom) 10%. I repeat these sorts H times for each forecasting

period. If the timeliness of the information set is important for accurately discriminating

between high and low expected return securities in a cross-section, then the strategies

that use forecasts for short-run periods (h ∈ {1,2,3,13,}) should out-perform strategies

that use much longer-run forecasts.

[Insert Table 8 about here]

5.2.1 Long-short stocks strategy

This is a long-short strategy that buys (sells) the value-weighted portfolio of the 10%

highest (lowest) expected return stocks within the 500 largest market capitalized firms

in the cross-section of stocks at some time t.

The results are presented in panel A of Table 8. Re-balancing the long-short stock

portfolio each month using the t + 1 forecasts produces a certainty equivalent of 11.73,

larger than the 8.13 for the buy and hold investor. This re-balanced portfolio also gener-

ates returns that are not explained by the CAPM or the Fama and French (2018) 5 factor

model. Therefore, the long-short portfolio’s improved performance does not come from

loading on the fundamental factors in either asset pricing model. Generally, the certainty

equivalents, average returns, and alphas fall with the horizon. The right way to think

about this is that using older forecasts to re-balance the long-short portfolio comes at a

cost. Remember, the portfolios are re-balanced monthly, and the horizon dimension is

captured by how old the forecast are. A monthly re-balanced long-short portfolio using

forecasts for period t + 120 means re-balancing with forecasts that are ten years old.

5.2.2 Characteristics rotation strategy

This cross-section is made up of the five characteristics in the Fama and French (2018) 6

factor model. The strategy buys (sells) an equally-weighted portfolio of the two long-short

characteristic sorted portfolios with the highest (lowest) expected returns. Individual
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long-short portfolios are value-weighted.

The results are presented in panel B of Table 8. The rotation strategy using forecasts

for period t + 1 almost double the certainty equivalent, average returns, and alphas of

the benchmark strategy that buys and holds all five portfolios. The gains from using

the forecasts fall as I use older forecasts. Whereas forecasts for period t + 1 generate an

annualized average return of 17.06 %, forecasts for period t+ 120 generate an annualized

average return of -3.22 %. Expanding this cross-section to the 56 long-short portfolios

does not change the conclusions.

6 Predictability decay over time

Ben-Rephael et al. (2015) show that the characteristic liquidity premium has significantly

declined over time. Chordia et al. (2013) study the predictive accuracy of a broader set

of characteristics in two sub-periods and find significant attenuation in the predictive

accuracy of the characteristics in the second sub-period. The decreasing predictive accu-

racy of characteristics is not much challenged in the literature. However, the hypothesis

put forward to explain the phenomena are many and varied. Chordia et al. (2011) argue

this result may be the effect of institutional activity, bringing about more efficient price

formation. McLean and Pontiff (2016) argue that the result may be due to popularization

coming from academic research.

Given that I condition the forecasting model on an overlap of these characteristic real-

izations, it is essential to answer the question, ”How has return predictability evolved over

the sample period?” If the information set has become less informative about expected

returns, we should expect to see decreasing out-of-sample R2 over time. To answer this

question, I compute a two-year rolling out-of-sample R2 from January 1997 to December

2018. I present the results for forecasts generated for month t + 1.

[Insert Figure 5 about here]

Panel A of Figure 5 reports the rolling out-of-sample R2 with respect to predicting time-

series variation in relative stock returns. The figure shows that a large fraction of the

forecasts’ ability to explain time-series variation in relative stock returns comes from the
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initial part of the sample. The average out-of-sample R2 in the first half of the sample

is about twice as large in the second half. From this, I can conclude that the predictive

ability of the information set has waned over time. However, I cannot conclude that the

forecasts have entirely lost their ability to predict time-series variation in relative stock

returns even though the estimates are negative at the end of the sample. This is because

a similar negative streak is present between 2007 and 2009, after which positive estimates

remerged.

The results for the market show that the rolling estimates are much more volatile.

This may be because the time-series variation in market returns is tougher to predict or

because the sample from which I compute the rolling estimate is smaller. Similar to the

case of individual stocks, the forecasts’ ability to predict time-series variation in returns

is much stronger in the first half of the sample than the second. At the end of the sample,

the rolling estimates are negative.

7 Variable importance across horizons

In this section, I investigate which covariates matter the most in generating return fore-

casts across horizons. I use the notion of Shapley values from Lundberg and Lee (2017).

The authors show that Shapley values generalize many competing measures of model

explainability with respect to neural networks.

Shapley regression values are measures of covariate importance for linear models that

are robust to multicollinearity (Lundberg and Lee (2017)). It is a feature importance

measure that requires re-estimation of a model on all possible covariate subsets S ⊆ F ,

where F is the set of all covariates. It assigns a value to each covariate representing the

marginal effect on the model prediction of including that feature.

To compute this marginal effect for some model f , consider the model fS∪{k} trained

with all covariates present and model fS with feature k withheld. The predictions from

the two models are then compared for some observation xS, fS∪{k}(xS∪{k})−fS∪{k}(xS), to

compute the marginal effect for that observation. This effect is computed for all possible

subsets S ⊆ F /k. Shapley values are then computed as the weighted average of all possible
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differences:

φi = ∑
S⊆F /k

∣S∣!(∣F ∣ − ∣S∣ − 1)!

∣F ∣!
[fS∪{k}(xS∪{k}) − fS∪{k}(xS)] (19)

Shapley additive explanation (SHAP) values represent an easily computable approxima-

tion of Eq. (19). These values provide the unique covariate importance measure I use15.

[Insert Figure 6 about here]

Figure 6 reports the overall ranking of characteristics for select horizons. I estimate

SHAP values for each observation in our sample and then average across characteristics.

Characteristics are ordered so that the highest-ranked is at the bottom and lowest-ranked

characteristics (out of the top four) at the top. Blue represents a negative contribution

to the forecast and red a positive contribution. In analyzing the results in this section,

it is important to remember the previous section’s results. In the cross-section of stocks,

the dominant factor we predict is the level factor.

The results show that the same three variables are the most important drivers of

return forecasts across horizons. The most important variable is dividend-yield (DP).

A unit increase in this variable positively predicts returns in the short and intermediate

run. It is not surprising that the most dominant predictive variable in our conditioning

information is the one variable that the literature has shown to predict market returns,

the dividend-yield (see, Goyal and Welch (2008),Cochrane (2011) and Ferreira and Santa-

Clara (2011)).

The second most important variable is debt-to-price. A unit increase in this variable

leads to a reduction in return forecasts across horizons. Intuitively, this results suggests

that as the average leverage in the cross-section of stocks increase, expected returns falls.

The third important variable is closeness of last month’s price to last 52 week close

(CL2HG), a trend related measure, is the third. The fourth measure is depreciation and

amortization to total assets.

Although one may be tempted to interpret all these estimates and their impact on

return forecasts with respect to only the cross-section of stocks, it is important to re-

member that there exists a factor structure inherent in this cross-section. However, it is

15See Lundberg and Lee (2017) for detail
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not clear how to decompose variable importance along similar lines as in Eq. (14). One

solution is to exclude a subset of characteristics and then compare the reduction in the

decomposed out-of-sample R2. However, systematically dropping and including charac-

teristics is leads to a combinatorial explosion in the number of tests. And so without

strong priors on what clusters of characteristics matter for which dimension of returns,

this solution is computationally infeasible.
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8 Conclusion

This paper primarily shows that incorporating economic theory in a neural network model

architectural design significantly improves the resulting model’s forecasting ability. I find

that the improvements mainly come from the resulting model’s ability to explain time-

series variations in returns. The improved model explains almost twice as much of the

variation in the following month’s returns compared to a much simpler neural network

model.

I show that the model that strictly adheres to economic theory produces forecasts

that robustly generalize beyond the cross-section of stocks compared to the simpler model.

Specifically, the aggregate market forecast robustly predicts time-series variations in mar-

ket returns up to three years into the future. And, the aggregate long-short portfolio

forecasts predict time-series variation in the following month’s return for 53 out of the

56 long-short portfolios. The simpler neural network fails along these two dimensions.

I disentangle the nature of the stock forecasts and show that short-run stock return

predictability is very different from long-run predictability. Monthly forecasts for up to

one year into the future, predict cross-sectional variations in stock returns and time-series

variation in relative stock returns, in addition to predicting the level factor in returns. In

contrast, forecasts for periods beyond one year only predict variations in the level factor.

Studying the time-series and cross-sectional properties of conditional expected returns

across multiple horizons is important for many reasons; 1) such studies naturally produce

new test portfolios for examining asset-pricing models. 2) they uncover new stylized facts

about expected returns that constitute a new set of moments for emerging theoretical

models to match. 3) their findings are practically useful because more accurate stock

return forecasts allow us to devise better trading strategies and find better costs of capital

estimates for future cash-flows.

In light of this paper’s findings, it would be interesting in future research to answer

the question, ”Why does cross-sectional return predictability decay so quickly along the

horizon dimension?” One possible hypothesis is that most of the predictable cross-section

variation in next month’s return is due to mispricing, which is then corrected quickly. And

so beyond the following month, there is very little cross-sectional mispricing information
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in the information set we are conditioning on. Another hypothesis is that today’s firms

are very different from their future selves if we compare them based on their characteristic

realizations’. If this is true, then characteristic realizations today will have a lot less to

say about future cross-sectional dispersion in returns the further in the future we want

to predict.
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Figure 1: Sample Splitting time-line
This figure presents a time-line for sample splitting scheme in the paper.
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Figure 2: Forecasting returns of long-short portfolios
This figure reports the out-of-sample R2 (R2

OOS) of monthly re-balanced long-short portfolios
formed from sorts on 56 characteristics listed in Table B.1 using forecasts from time t−h, where
h ∈ {1,2,3,13,25,37,49,61,121}. Grey bars represent statistically significant R2

OOS using the
the Clark-West (2007) test at the 5% level. Panel A reports the composite R2

OOS , Panel B
reports the R2

OOS contribution that comes from the ability of the neural network forecasts to
better predict time-series variation in returns to long-short portfolios, and Panel C reports
the R2

OOS contribution that comes from the ability of the neural network forecasts to better
predict the unconditional returns to long-short portfolios. The alternative model is the historical
portfolio return computed from an expanding window mean with data from 1965. The sample
period is from January 1995 to December 2018.
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Figure 3: Forecasting returns of long-short portfolios using forecasts for different
horizons.
This figure reports statistics for long-short portfolios formed from sorts on 56 characteristics
listed in Table B.1. We report in panel A the fraction of 56 long-short portfolios where the neural
network forecast has a positive R2

OOS with respect to the historical portfolio return computed
from an expanding window mean with data from 1965. Panel B reports the fraction of 56 long-
short portfolios where the forecasts from the neural network model are statistically better than
the forecasts from the zero-prediction model at the 5% level using the the Clark-West (2007)
test. For each prediction t − h, we report fractions that pertain to results for the composite
R2
OOS , the contributions coming from better predicting time-series variations in return (grey),

and improvements coming from predicting the unconditional portfolio return (brown). The
sample period is from January 1995 to December 2018.
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Figure 4: Timing long-short characteristic sorted portfolios
This figure reports the performance statistics of a portfolio that times each of the 56 long-
short portfolios defined in Figure 2 and the risk-free asset. For Panels A and B, we report the
performance statistics for the difference in returns between holding the timing portfolio and the
buy and hold alternative. Panel A reports the annualized average return, Panel B reports the
Sharpe ratio improvement, and panel C reports the Fama and French (2018) 6 factor model
alpha (annualized) from regressing the returns of the timing portfolio on the pricing factors.
Grey bars in Panels A and B represent long-short portfolios for which the improvement in returns
is statistically significant at the 5% level. Grey bars in Panel C represent long-short portfolio
returns with a statically significant alpha at the 5 % level with respect to the Fama-French 6
factor model. The sample period is from January 1995 to December 2018.
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Figure 5: Two-year rolling out-of-sample R2

This figure reports a two-year rolling out-of-sample R2 (R2
OOS) for demeaned monthly return forecasts from the economically restricted neural

network model. The rolling estimates capture the changes in the neural network forecasts’ ability to predict time-series variations in stock
returns. In panel A, we report this estimate for the pool of stocks, and in panel B, we report this estimate for the value-weighted market.
The alternative model is a zero prediction model and the period is t + 1. The sample period is from January 1995 to December 2018.
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Figure 6: Variable importance with Shapley values
This figure reports the top four variables that increase return forecasts the most. A one-unit increase in a variable changes the return forecast
by the corresponding Shapley value. A red (blue) bar represents a positive (negative) change in return forecasts. Shapley values are computed
for each firm-month observation in the out-of-sample period and averaged over all observations. The sample period is from January 1995 to
December 2018.
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Table 1: Predicting stock returns across horizons
This table presents R2

OOS estimates for firm-level return forecasts generated at time t for month
t+h where h ∈ {1,2,3,13,37,61,91,121}. The R2

OOS is defined with respect to a zero prediction
benchmark. Panel A reports the R2

OOS for a neural network forecasting model that adheres
strictly to economic theory as defined in Equation (2) and a simpler neural network forecasting
model with no economic restrictions as defined in Eq. (8). Panel B reports the decomposition
of the R2

OOS into three parts. The time-series variation dimension captures the forecasting
model’s ability to improve on forecasts from the benchmark model with respect to predicting
time-series variation in relative stock returns. The unconditional relative stock return dimension
captures the forecasting model’s ability to improve upon on forecasts from the benchmark model
with respect to predicting the unconditional relative stock return. Finally, the cross-sectional
mean return dimension captures the forecasting model’s ability to improve upon forecasts from
the benchmark model with respect to predicting the level factor in stock returns; the equally-
weighted market return. Bold fonts indicate horizons for which the forecasts from the neural
network model and alternative model are statistically different at the 5% level or better using
the Clark-West (2007) test. The sample period is from January 1995 to December 2018.

h 1 2 3 13 37 61 91 121

Panel A: Composite R2
OOS

Economically restricted model 0.99 0.49 0.40 0.35 0.28 0.28 0.24 0.13

Simple model 0.58 0.41 0.40 0.37 0.35 0.34 0.27 0.18

Panel B: Decomposed R2
OOS

Economically restricted model

Time-series variation 0.71 0.16 0.09 0.08 -0.06 -0.05 -0.07 -0.09
Unconditional rel. stock ret. -0.16 -0.03 -0.02 -0.08 0.03 0.02 0.04 0.03
Cross-sectional mean return 0.43 0.36 0.33 0.36 0.32 0.31 0.27 0.20

Simple model

Time-series variation 0.20 0.01 0.02 0.03 -0.04 -0.04 -0.07 -0.07
Unconditional rel. stock ret. -0.04 -0.01 -0.02 -0.05 -0.01 -0.00 0.00 0.00
Cross-sectional mean return 0.41 0.41 0.41 0.40 0.40 0.39 0.33 0.24
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Table 2: Historical average market return benchmark
This table is similar to Table 1 but the benchmark model is the historical average equally-
weighted market return computed from an expanding window using data from 1926. Panel A
reports the R2

OOS for a neural network forecasting model that adheres strictly to economic theory
as defined in Equation (2), and panel B reports results for a simpler neural network forecasting
model with no economic restrictions as defined in Eq. (8). Bold fonts indicate horizons for which
the forecasts from the neural network model and alternative model are statistically different at
the 5% level or better using the Clark-West (2007) test. The sample period is from January
1995 to December 2018.

h 1 2 3 13 37 61 91 121

Panel A: Economically restricted model

Composite R2
OOS 0.64 0.14 0.04 0.00 0.05 0.16 0.37 0.62

Time-series variation 0.71 0.16 0.09 0.08 -0.06 -0.05 -0.07 -0.09
Unconditional rel. stock ret. -0.16 -0.03 -0.02 -0.08 0.03 0.02 0.04 0.03
Cross-sectional mean return 0.08 0.01 -0.02 0.01 0.08 0.19 0.40 0.69

Panel B: Simple model

Composite R2
OOS 0.20 0.03 0.01 -0.00 0.04 0.17 0.32 0.55

Time-series variation 0.20 0.01 0.02 0.03 -0.04 -0.04 -0.07 -0.07
Unconditional rel. stock ret. -0.04 -0.01 -0.02 -0.05 -0.01 -0.00 0.00 0.00
Cross-sectional mean return 0.03 0.03 0.02 0.02 0.09 0.21 0.39 0.61
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Table 3: Predicting market returns across horizons
This table presents out-of-sample (R2

OOS) estimates for market forecasts for different months
in the future t + h, h ∈ {1,2,3,13,37,61,91,121}, conditional on information observed at time
t. Panel A reports results for a neural network forecasting model that adheres strictly to
economic theory as defined in Equation (2). Panel B reports results for a simpler neural network
forecasting model with no economic restrictions as defined in Eq. (8). The market forecasts
are defined as the value-weighted cross-sectional average stock forecasts and the market return
as the value-weighted cross-sectional average stock return. I report results for two benchmark
models, a zero-prediction model that predicts a return of zero for all horizons and the historical
equity market benchmark that forecasts market return as the average market return using data
from July 1926 upto time t. I decompose the R2

OOS into contributions coming from the neural
network forecasts ability to explain better time-series variation (Time-series variation) and the
unconditional market return (Uncond. market ret.). Bold fonts indicate horizons for which the
forecasts from the neural network model and alternative model are statistically different at the
5% level or better using the Clark-West (2007) test. The sample period is from January 1995
to December 2018.

h 1 2 3 13 37 61 91 121

Panel A: Economically restricted model

Zero prediction benchmark

Composite R2
OOS 5.35 5.30 5.17 4.90 4.42 3.05 3.48 2.77

Time-series variation 1.92 1.82 1.69 1.51 1.10 -0.03 0.19 -0.42
Uncond. market ret. 3.42 3.49 3.49 3.39 3.31 3.08 3.30 3.19

Historical average market benchmark

Composite R2
OOS 2.05 2.03 1.89 1.64 1.09 -0.40 0.13 -0.63

Time-series variation 2.06 1.97 1.84 1.68 1.21 -0.04 0.26 -0.39
Uncond. market ret. -0.01 0.06 0.05 -0.04 -0.12 -0.36 -0.13 -0.24

Panel B: Simple model

Zero prediction benchmark

Composite R2
OOS 1.43 2.53 2.37 3.08 3.65 4.14 3.47 3.72

Time-series variation 0.21 0.48 0.26 0.54 0.60 0.70 0.01 0.03

Uncond. market ret. 1.23 2.06 2.10 2.54 3.05 3.44 3.46 3.69

Historical average market benchmark

Composite R2
OOS -2.29 -1.13 -1.31 -0.52 0.04 0.47 -0.16 0.07

Time-series variation 0.29 0.59 0.36 0.70 0.73 0.75 0.10 0.09

Uncond. market ret. -2.59 -1.72 -1.67 -1.22 -0.69 -0.28 -0.25 -0.02
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Table 4: Predicting long-short characteristic sorted portfolio returns (Simple model)
This table reports the out-of-sample R2 (R2

OOS) estimates for monthly rebalanced long-short
portfolios formed from sorts on book-to-market (BEME), investments (INV), size (SIZE), mom
(Momentum), and profitability (PROF). The results are for the simple neural network fore-
casting model, as defined in Equation (8). The benchmark model is the zero prediction model.
Bold fonts indicate horizons for which the forecasts from the simple neural network model and
alternative model are statistically different at the 5% level or better using the Clark-West (2007)
test. The sample period is from January 1995 to December 2018.

h 1 2 3 13

BEME

Composite R2
OOS -1.94 -1.53 -2.10 -0.78

Time-series variation -2.64 -1.33 -1.48 -0.32
Unconditional LS Ret. 0.70 -0.20 -0.62 -0.46

INV

Composite R2
OOS -0.78 2.91 3.60 0.41

Time-series variation 0.15 0.89 0.97 0.63
Unconditional LS Ret. -0.92 2.02 2.62 -0.22

SIZE

Composite R2
OOS 0.44 0.61 0.48 -0.15

Time-series variation 0.45 0.88 0.89 0.11
Unconditional LS Ret. -0.01 -0.27 -0.41 -0.26

MOM

Composite R2
OOS -1.47 -0.98 -2.60 -2.29

Time-series variation -1.24 -0.53 -1.31 -0.96
Unconditional LS Ret. -0.23 -0.44 -1.29 -1.34

PROF

Composite R2
OOS -0.56 0.14 0.28 1.23

Time-series variation -0.74 -0.06 0.28 1.00
Unconditional LS Ret. 0.18 0.20 0.00 0.23
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Table 5: Predicting long-short portfolio returns (Economically restricted model)
This table reports the out-of-sample R2 (R2

OOS) estimates for monthly rebalanced long-short
portfolios formed from sorts on book-to-market (BEME), investments (INV), size (SIZE), mom
(Momentum), and profitability (PROF). The results are for the neural network forecasting
model that adheres strictly to economic theory as defined in Equation (2). The benchmark
model is the historical average return of the long-short portfolio computed from an expanding
window using data from 1964. Bold fonts indicate horizons for which the forecasts from the
neural network model and alternative model are statistically different at the 5% level or better
using the Clark-West (2007) test. The sample period is from January 1995 to December 2018.

h 1 2 3 13 37 61 91 121

BEME

Composite R2
OOS 0.68 0.80 0.73 0.81 -0.30 -0.17 -0.34 -0.23

Time-series variation 0.52 0.62 0.51 -0.03 -0.30 -0.13 -0.20 0.01
Unconditional LS Ret. 0.15 0.18 0.22 0.84 -0.00 -0.04 -0.14 -0.24

SIZE

Composite R2
OOS 1.74 1.48 1.32 0.71 0.14 0.01 -0.45 -0.56

Time-series variation 1.66 1.43 1.28 0.78 0.10 -0.06 -0.41 -0.44
Unconditional LS Ret. 0.08 0.05 0.04 -0.08 0.04 0.07 -0.04 -0.12

PROF

Composite R2
OOS 0.95 0.97 0.75 0.55 -0.06 0.07 0.24 -0.12

Time-series variation 0.67 0.72 0.51 0.28 -0.03 -0.05 0.15 -0.14
Unconditional LS Ret. 0.28 0.24 0.25 0.27 -0.03 0.12 0.09 0.01

INV

Composite R2
OOS 3.34 3.49 3.23 1.93 0.30 0.17 0.00 0.36

Time-series variation 1.81 1.95 1.67 0.56 0.07 -0.13 -0.09 -0.01
Unconditional LS Ret. 1.53 1.55 1.56 1.37 0.23 0.30 0.10 0.37

MOM

Composite R2
OOS 1.34 0.84 0.43 0.41 -0.21 -0.10 -0.25 -0.50

Time-series variation 0.22 0.18 0.22 0.28 0.02 -0.02 -0.04 -0.14
Unconditional LS Ret. 1.12 0.66 0.20 0.14 -0.24 -0.08 -0.21 -0.37
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Table 6: Time-series regression of returns on forecasts
This table reports the results from a time-series regression of returns on the economically restricted model’s demeaned forecasts. Panel A
reports results from regressing stock returns on demeaned relative stock forecasts. Panel B reports results from regressing the value-weighted
market return on demeaned value-weighted market forecasts. Panels C and D report results from regressing long-short portfolio returns on
demeaned long-short portfolio forecasts. β0 and β1 are the intercept and slope coefficients from these regressions. For each of the estimates,
we report the 95% confidence interval constructed from Newey-West 1987 corrected standard errors. The sample period is from January 1995
to December 2018.

h 1 2 3 13 25 37 49 61 91 121

Panel A: Pool of stocks

β0 1.08 1.08 1.08 1.02 0.93 0.83 0.78 0.72 0.59 0.47
(βl0, β

u
0 ) (1.05,1.11) (1.05,1.11) (1.05,1.11) (1.00,1.05) (0.90,0.96) (0.81,0.86) (0.76,0.80) (0.70,0.74) (0.57,0.60) (0.46,0.49)

β1 0.97 0.80 0.68 0.79 0.24 -0.02 0.03 0.11 -0.12 -0.04
(βl1, β

u
1 ) (0.94,1.00) (0.76,0.84) (0.64,0.72) (0.74,0.85) (0.19,0.30) (-0.09,0.05) (-0.04,0.09) (0.04,0.17) (-0.19,-0.05) (-0.10,0.02)

R2 0.71 0.17 0.11 0.09 0.01 0.00 0.00 0.00 0.00 0.00
NOS. 1507557 1508884 1510083 1519230 1525769 1529073 1532204 1536016 1543943 1535857

Panel B: Value-weighted market

β0 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
(βl0, β

u
0 ) (0.28,1.30) (0.28,1.30) (0.28,1.30) (0.28,1.30) (0.28,1.30) (0.28,1.30) (0.28,1.30) (0.27,1.30) (0.27,1.30) (0.27,1.30)

β1 1.78 1.58 1.34 1.69 1.45 1.63 1.66 0.42 0.44 -0.22
(βl1, β

u
1 ) (0.44,3.12) (0.24,2.92) (0.09,2.60) (0.23,3.16) (0.11,2.79) (0.01,3.24) (-0.24,3.57) (-1.61,2.45) (-1.14,2.02) (-2.17,1.73)

R2 2.18 1.79 1.53 1.53 1.49 1.05 0.82 0.05 0.08 0.02
NOS. 282 282 282 282 282 282 282 282 282 282

Panel C: Pool of long-short portfolios

β0 0.31 0.31 0.29 0.28 0.25 0.23 0.23 0.27 0.26 0.13
(βl0, β

u
0 ) (-0.04,0.65) (-0.03,0.65) (-0.05,0.63) (-0.05,0.61) (-0.08,0.57) (-0.09,0.56) (-0.08,0.55) (-0.05,0.58) (-0.05,0.56) (-0.16,0.42)

β1 1.96 2.20 2.07 2.29 2.12 0.35 -0.73 -0.98 -0.99 -2.93
(βl1, β

u
1 ) (0.88,3.04) (1.19,3.21) (0.98,3.16) (0.67,3.90) (-0.34,4.58) (-2.87,3.56) (-4.67,3.22) (-4.67,2.71) (-4.32,2.34) (-6.34,0.48)

R2 1.74 1.81 1.48 0.66 0.23 0.00 0.01 0.02 0.03 0.22
NOS. 282 282 282 282 282 282 282 282 282 282
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Continued

h 1 2 3 13 25 37 49 61 91 121

Panel D: Individual long-short portfolios

BEME

β1 1.39 2.73 2.45 0.57 -1.69 -8.14 -9.46 -3.97 -10.64 -0.21

(βl1, β
u
1 ) (-1.33,4.11) (-1.12,6.58) (-1.69,6.60) (-4.86,6.01) (-10.29,6.90) (-18.32,2.05) (-18.59,-0.34) (-11.92,3.98) (-22.79,1.51) (-13.18,12.77)

R2 0.56 1.04 0.77 0.02 0.09 1.16 1.62 0.27 0.95 0.00

SIZE

β1 4.99 4.36 3.80 6.55 4.20 3.67 3.49 -0.93 -6.85 -6.17

(βl1, β
u
1 ) (1.98,8.00) (1.55,7.17) (1.11,6.49) (1.20,11.91) (-1.67,10.07) (-5.70,13.04) (-7.75,14.74) (-9.19,7.32) (-13.13,-0.56) (-12.56,0.22)

R2 4.60 3.51 2.80 2.83 0.78 0.22 0.10 0.01 1.29 1.23

PROF

β1 4.72 5.40 4.65 3.44 2.95 0.38 2.44 -1.60 5.85 -4.49

(βl1, β
u
1 ) (0.46,8.98) (1.42,9.38) (0.11,9.18) (-1.24,8.12) (-2.56,8.47) (-6.85,7.60) (-8.36,13.24) (-10.77,7.57) (-3.72,15.42) (-15.44,6.45)

R2 1.75 2.13 1.32 0.59 0.26 0.00 0.06 0.03 0.51 0.27

INV

β1 4.03 5.27 4.66 3.01 2.94 1.52 -2.55 -2.52 -1.26 0.31

(βl1, β
u
1 ) (1.50,6.57) (2.38,8.16) (1.66,7.65) (-0.75,6.76) (-2.07,7.95) (-3.95,7.00) (-9.43,4.34) (-8.61,3.57) (-8.27,5.75) (-8.96,9.58)

R2 4.25 5.85 4.53 1.01 0.46 0.08 0.18 0.13 0.04 0.00

MOM

β1 1.41 2.40 1.85 4.25 4.92 3.88 3.96 -1.31 -1.58 -9.04

(βl1, β
u
1 ) (-1.88,4.70) (-1.74,6.54) (-2.56,6.25) (-2.13,10.62) (-4.43,14.27) (-10.24,18.01) (-12.25,20.17) (-18.03,15.41) (-17.78,14.62) (-25.93,7.85)

R2 0.34 0.50 0.28 0.67 0.38 0.10 0.09 0.01 0.02 0.39
NOS. 282 282 282 282 282 282 282 282 282 282
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Table 7: Timing Strategies
This table reports performance statistics for portfolios formed from sorts on neural network
forecasts. I report the annualized average return (Avg. ret), annualized Sharpe ratio (Sharpe),
the annualized certainty equivalent (Utility) in percentages for an agent with a mean-variance
utility function, and a risk aversion parameter of 2, the CAPM and Fama-French 6 factor model

alphas. The two timing strategies invests: wt,h =
r̃t,h−rft+1

γσ2(r̃1∶t−1,h) in a risky security and 1 − wt,h

in the risk-free asset. I fix σ(r̃1∶t−1,h) at 0.15√
12

to make the results comparable across forecasts.

Panel A reports results for a strategy where the expected return on the value-weighted market
(r̃t,h) is computed as a function of different forecasts (h ∈ {1,2,3,13,25,37,49,61,121}) from the
neural network model. We restrict the cross-section to the 500 largest stocks. The buy and hold
strategy buys all 500 stocks in this restricted cross-section for each month t. Panel B reports
results for a strategy where the expected return on an equally-weighted portfolio of the five
long-short portfolios (value-weighted) formed from the characteristics in the Fama and French
(2018) model. The buy and hold strategy buys all five portfolios in each month t whereas the
timing strategies lever up and down this portfolio based on expected next month returns. The
sample period is 1995 to 2018.

Utility Avg. ret Sharpe αcapm αFF6

Panel A: Market

Buy & hold 8.18 10.39 0.70 0.23 0.04

h

1 12.86 17.21 0.83 8.41 4.14
2 12.47 15.79 0.87 8.53 3.49
3 12.76 15.70 0.92 8.95 3.40
13 10.54 12.33 0.92 7.31 4.64
25 10.60 12.61 0.89 7.43 4.77
37 9.19 10.39 0.95 5.76 4.53
49 7.75 8.83 0.85 4.50 3.97
61 5.31 6.66 0.57 3.01 2.03
91 7.04 8.15 0.77 3.42 3.37
121 4.77 6.86 0.47 2.97 4.12

Panel B: Equally-weighted portfolio of long-short portfolios

Buy & hold 3.02 3.88 0.42 5.73 1.70

h

1 5.04 6.72 0.52 9.05 5.28
2 4.78 6.22 0.52 8.05 4.48
3 4.40 5.78 0.49 7.57 3.90
13 3.48 3.82 0.65 4.79 2.76
25 2.78 2.92 0.79 3.49 2.39
37 2.33 2.40 0.95 2.78 1.94
49 2.39 2.44 1.12 2.79 1.91
61 2.39 2.43 1.25 2.68 2.07
91 2.14 2.17 1.13 2.44 1.65
121 1.62 1.64 1.13 1.78 1.25
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Table 8: Rotation strategies
This table reports performance statistics, as in Table 8. The strategy in panel A goes long
(short) the value-weighted portfolio of the top (bottom) 10% of stocks with the highest (lowest)
forecasted return for each month t. I restrict the cross-section of stocks to the 500 largest
market-cap firms at each time t. The buy and hold strategy buys all 500 stocks in this restricted
cross-section for each month t. In Panel B, the strategy buys (sells) an equally-weighted portfolio
of the two characteristic-sorted long-short portfolios with an expected return above (below) the
median forecast for each month t. The buy and hold strategy buys all long-short portfolios
in each month t. I restrict the characteristic-sorted long-short portfolios to the five Fama and
French (2018) characteristics. To highlight the importance of timely conditioning information,
we consider variants of the strategy where the expected month t stock return, Et−h[Rt], comes
from different horizons, h ∈ {1,2,3,13,25,37,49,61,121}. The sample period is 1995 to 2018.

Utility Avg. ret Sharpe αcapm αFF6

Panel A: Stocks

Buy & hold 8.18 10.39 0.70 0.23 0.04

Rotation (h)

1 11.73 15.82 0.78 21.19 11.05
2 8.74 13.89 0.61 20.01 8.37
3 3.98 9.15 0.40 15.27 3.46
13 0.26 6.26 0.26 11.22 0.07
25 -0.76 3.69 0.18 7.75 0.33
37 -1.60 0.45 0.03 2.02 -0.04
49 -1.43 0.62 0.04 2.08 1.80
61 0.85 2.74 0.20 4.99 2.46
91 -0.57 1.50 0.10 2.89 1.63
121 -0.14 1.43 0.11 0.96 0.17

Panel B: Long-short portfolios

Buy & hold 3.02 3.88 0.42 5.73 1.70

Rotation (h)
1 10.45 17.06 0.66 24.51 9.94
2 12.77 19.41 0.75 26.36 12.47
3 9.80 16.65 0.64 23.88 10.15
13 3.01 8.96 0.37 14.27 4.20
25 2.04 7.62 0.32 11.90 5.79
37 -5.75 -1.06 -0.05 0.25 -1.46
49 -6.33 -1.27 -0.06 0.65 -0.91
61 -6.85 -2.50 -0.12 -0.62 -3.48
91 -8.01 -3.80 -0.19 -2.48 -4.38
121 -7.00 -3.22 -0.17 -2.40 -2.96
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A Robustness Checks

In this section, I consider alternative benchmarks and additional checks of the robustness

of the results in the paper.

A.1 Alternative benchmarks

To highlight the general performance of the neural network forecasts, I consider two

additional benchmarks from the literature. These benchmark models forecast monthly

firm returns as a function of historical individual firm returns. The first model predicts

the time t + h return of firm i as the average firm i return computed over a five-year

rolling window; the five-year rolling window firm average return benchmark. The second

model predicts the time t + h return of firm i as the average firm i return from the start

of the sample up to time t; the expanding window firm average return benchmark.

[Insert Table IA.1 about here]

Panels A and B of Table IA.1 report results for the alternative benchmarks described

above. The R2
OOS is positive for all future periods and statistically significant for both

models. Prediction accuracy is higher for short-run periods and falls with the horizon.

The positive R2
OOS of the neural network forecasts against these benchmarks are much

larger than the estimates against the zero prediction benchmark because firm average

returns are very noisy estimates of expected firm returns.

Comparing the R2
OOS estimates of the simple model to the economically restricted

model across horizons and benchmarks, it is evident that economic restrictions generally

improve the forecasts. Most of this improvement is concentrated in the short-run. In

predicting next month’s return, the economically restricted model has an R2
OOS of about

2.18% against the five-year rolling window benchmark, whereas the simple model has an

R2
OOS of about 1.76%. In predicting returns ten-years into the future, the economically

restricted model has an R2
OOS of 0.63% against the expanding window firm average return

benchmark, and the simple model has an R2
OOS of about 0.64%.
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Table IA.1: Alternative benchmarks
This table presents out-of-sample R2 (R2

OOS) estimates for firm-level return forecasts generated
by neural network models at time t for month t + h where h ∈ {1,2,3,13,25,37,49,61,121}.
Panel A reports the R2

OOS for a neural network forecasting model that adheres strictly to
economic theory as defined in Equation (2), and panel B reports results for a simpler neural
network forecasting model with no economic restrictions as defined in Eq. (8). I present the
R2
OOS for the neural network model against two alternative models; a five-year rolling window

firm average return model, and an expanding window firm average return model. Bold fonts
indicate horizons for which the forecasts from the neural network model and alternative model
are statistically different at the 5% level or better using the Clark-West (2007) test. The sample
period is from January 1995 to December 2018.

h 1 2 3 13 37 61 91 121

Panel A: Economically restricted model

Five-Year Rolling Window 2.18 1.78 1.71 1.75 1.34 1.54 1.54 1.58
Expanding Window 1.26 0.81 0.72 0.74 0.58 0.59 0.62 0.63

Panel B: Simple model

Five-Year Rolling Window 1.76 1.64 1.62 1.58 1.28 1.51 1.42 1.38

Expanding Window 0.91 0.75 0.72 0.70 0.59 0.68 0.65 0.64
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Table B.1: Characteristics
This table lists the characteristics used in this paper. For each characteristic, we present the associated acronym, the original source and the
definition of the characteristic.

Acronym Author(s) Definition

A2ME Bhandari (1988) Total assets (at) over market capitalization (prc x shrout)
AC Sloan (1996) Change in operating working capital per split adjusted share from fiscal year t− 2 to t− 1

to book equity, (BEME), per share. Operating working capital per split-adjusted share
is defined as current assets (ACT) minus cash and short-term investments (che) minus
current liabilites (lct) minus debt in current liabilities (dlc) minus income taxes payable
(txp).

AOA Bandyopadhyay et al. (2010) Absolute value of OA
AT Gandhi and Lustig (2015) Total assets (at)
ATO Soliman (2008) Net sales (sales) over lagged net operating assets. Net operating assets is the difference

between operating assets and operating liabilities. Operating Assets is total assets (at)
minus cash and short-term investments (che) minus investments and other advances (ivao).
Operating Liabilities is total assets (at) minus debt in current liabilities (dlc) minus long-
debt debt (dltt) minus minority interest (mib) minus preferred stock (pstk) minus common
equity (ceq).

BEME (BM) Davis et al. (2000) Book equity to market equity. Book equity is shareholders’ equity (seq), (if missing,
common equity (ceq) plus preferred stock (pstk), if missing, total assets (at) minus total
liabilities (lt)), plus deferred taxes and investment tax credit (txditc) minus preferred stock
(pstrkrv), (if missing, liquidation value, (pstkl), if missing par value (pstk)). Market value
of equity is shares outstanding (shrout) times price (prc).

BETA Frazzini and Pedersen (2014) The product of the correlation between stock excess returns and market excess returns and
the ratio of volatilities. Ratio of volatilities is the volatility of stock excess returns to the
volatility of market excess returns. Volatility is computed from the standard deviations
of daily log excess returns over a one-year horizon requiring at least 120 observations.
Correlations is computed using overlapping three-day log excess returns over a five-year
period requiring at least 750 non-missing observations.

BETAd Lewellen and Nagel (2006) The sum of the regression coefficients of daily excess returns on market excess returns
and the lag of market excess returns.

C2A Palazzo (2012) Cash and short-term investments (che) to total assets (at).
C2D Ou and Penman (1989) Cashflow to debt. Cashflow is the sum of income and extraordinary items (ib) and de-

preciation and amortization (dp). And debt is to total liabilities (lt).
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Continued

Acronym Author(s) Definition

CAT Haugen and Baker (1996) Sales (sale) to lagged total assets (at).
CF2P Desai et al. (2004) Cashflow to book value of equity is the ratio of net income (ni), depreciation and amorti-

zation (dp) less change in working capital (wcapch) and capital expenditure (capx) over
the book-value of equity (BEME).

CL2HG George and Hwang (2004) ratio of last month closing price to the max closing price over the last 52 weeks.
D2A Gorodnichenko and Weber (2016) Depreciation and amortization (dp) to total assets (at).
D2P Litzenberger and Ramaswamy (1979) Debt to price. Debt is long-term debt (dltt) plus debt in current liabilities (dlc). Market

capitalization is the product of shares outstanding (shrout) and price (prc).
dCEQ Richardson et al. (2005) Annual % change in book value of equity (ceq).
dGS Abarbanell and Bushee (1997) % change in gross margin minus % change in sales (sale). Gross margin is the difference

in sales (sale) and cost of goods sold (cogs).
dPIA Lyandres et al. (2008) Change in property, plants and equipment (ppegt) and inventory (invt) over lagged total

assets (at).
dSO Fama and French (2008) Log change in the product of shares outstanding (csho) and the adjustment factor (ajex).
dSOUT Pontiff and Woodgate (2008) Annual % change in shares outstanding (shrout).
DP Litzenberger and Ramaswamy (1979) Sum of monthly dividend over the last 12 months to last month’s price (prc).
DTO Garfinkel (2009) Daily volume (vol) to shares outstanding (shrout) minus the daily market turnover and

detrended by the 180 trading day median. To address the double counting of volume for
NASDAQ securities, we follow Anderson and Dyl (2005) and scale down the volume of
NASDAQ securities by 50% before and by 38% after 1997.

E2P Basu (1983) Income before extraordinary items (ib) to market capitalization (prc x shrout).
EPS Basu (1977) Income before extraordinary items (ib) to shares outstanding (shrout).
FC2Y D’Acunto et al. (2018) Ratio of selling, general and administrative expenses (xsgs), research and development

expenses (xrd) and advertising expenses (xad) to net sales.
FCF Hou et al. (2011) Ratio of net income (ni), depreciation and amortization (dp) less change in working capital

(wcapch) and capital expenditure (capx) over book value of equity as defined in BEME.
I2A (INV) Cooper et al. (2008) Annual % change in total assets (at).
IDIOV Ang et al. (2006) Standard deviation of the residuals from a regression of excess returns on the Fama and

French (1993) three-factor model.
IPM Pre-tax income (pi) over sales (sale).
IVC Thomas and Zhang (2002) Annual change in inventories (invt) in the last two fiscal years over the average total assets

(at) over the last two fiscal years.
LEV Lewellen (2015) long-term debt (dltt) plus current liabilities (dlc) over the sum of long term debt (dltt),

debt in current liabilities (dlc) and stockholders equity (seq).
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Continued

Acronym Author(s) Definition

MAXRET Bali et al. (2011) Last months stock price (prc) over previous 52 week max price.
NOA Hirshleifer et al. (2004) Operating assets minus operating liabilities to lagged total assets (at). Operating assets is

total assets (at) minus cash and short term investments (che) minus investment and other
advances (ivao). Operating liabilities is total assets (at) minus debt in current liabilities
(dlc) minus long-term debt (dltt) minus minority interest (mib) minus preferred stock
(pstk) minus common equity (ceq).

OA Sloan (1996) Changes in non-cash working capital minus depreciation (dp), all scaled by lagged total
assets (at). Changes in non-cash working capital is difference in current assets (act) minus
difference in cash and short-term investments (che) minus difference in current liabilities
(lct) minus difference in debt in current liabilities (dlc) minus difference in taxes payable
(txp).

OL Novy-Marx (2011) Sum of cost of goods sold (cogs) and selling, general and administrative expense (xsga)
over total assets (at).

PCM Gorodnichenko and Weber (2016) Net sales (sale) minus cost of goods sold (cogs) all scaled by net sales (sale).
PM Soliman (2008) Operating Income after depreciation (oiadp) to sales (sale).
PROF Ball et al. (2015) Gross profitability (gp) over book equity as defined in BEME.
Q Total assets (at) plus market value of equity (shrout x prc) minus cash and short-term

investments (ceq) minus deferred taxes (txdb) scaled by total assets (at).
R12,2 Fama and French (1996) Cumulative return from 12 months to 2 months ago.
R12,7 Novy-Marx (2012) Cumulative return from 12 months to 7 months ago.
R2,1 Jegadeesh (1990) Lagged one month return.
R36,13 De Bondt and Thaler (1985) Cumulative return from 36 months to 13 months ago.
R6,2 Jegadeesh and Titman (1993) Cumulative return from 6 months to 2 months ago.
RETVOL Ang et al. (2006) Standard deviation of residuals from a regression of excess returns on a constant using

one month of daily data. We require there to be at least 15 non-missing observations.
RNA Soliman (2008) Operating income after depreciation (oiadp) scaled by lagged net operating assets. Net

operating assets is operating assets minus operating liabilities. Operating assets is total
assets (at) minus cash and short term investments (che) minus investment and other
advances (ivao). Operating liabilities is total assets (at) minus debt in current liabilities
(dlc) minus long-term debt (dltt) minus minority interest (mib) minus preferred stock
(pstk) minus common equity (ceq).

ROA Balakrishnan et al. (2010) Income before extraordinary items (ib) to lagged total assets (at).

65



Continued

Acronym Author(s) Definition

ROC Chandrashekar and Rao (2009) Market value of equity (shrout x prc) plus long-term debt (dltt) minus total assets (at)
all over cash and short-term investments (che).

ROE Haugen and Baker (1996) Income before extraordinary items (ib) to lagged book-value of equity.
ROIC Brown and Rowe (2007) Earnings before interest and taxes (ebit) less non-operating income (nopi) to the sum of

common equity (ceq), total liabilities (lt), and cash and short-term investments (che).
S2P Lewellen (2015) Net sales (sale) to market capitalization (shrout x prc).
sdDVOL Chordia et al. (2001) Standard deviation of residuals from a regression of daily volume (vol) on a constant. Use

one month of daily data requiring at-least 15 non-missing observations.
sdTURN Chordia et al. (2001) Standard deviation of residuals from a regression of daily turnover on a constant. Turnover

is volume (vol) times shares outstanding (shrout). Use one month of daily data requiring
at-least 15 non-missing observations.

SG Lakonishok et al. (1994) % growth rate in sales (sale).
SGNA Selling, general and administrative expenses (XSGA) to net sales (sale).
SIZE Fama and French (1992) Price (prc) times shares outstanding (shrout) .
SPREAD Chung and Zhang (2014) Average daily bid-ask spread in the previous month.
SUV Garfinkel (2009) Difference between actual volume and predicted volume. Predicted volume is from a

regression of previous month’s daily volume on a constant and the absolute values of
positive and negative previous month’s returns. Unexplained volume is standardized by
the standard deviation of the residuals from the regression.

TNOVR Datar et al. (1998) Volume (vol) over shares outstanding (shrout).
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C Details of Algorithms

Denote the penalized loss function of the neural network model as L(θ; ⋅). The standard

method for finding the optimal parameters (θ∗) that minimizes L(θ; ⋅) is stochastic gra-

dient descent (SGD), Goodfellow et al. (2016). Minimizing this loss function with SGD

is slow and inefficient because it is a first-order optimization procedure. In this study we

use a recent variant of SGD called AdaBound, Luo et al. (2019) which uses second-order

information and has theoretical convergence guarantees.

We initialize θ by sampling θ0 from N(0, n−1h ) where nh is the size of the input vector

of layer h. A single training step t, consists of a randomly sampling 10000 firm-month

observations from the training set and running Algorithm 1.

Algorithm 1: AdaBound Variant of Stochastic Gradient Descent

1 Initialization : θ0 ∼ N(0, n−1h ). α = 10−1. m0 = 0. vo = 0 ;

2 while θt not coverge do

3 t← t + 1;

4 gt = ∇θLt(θt−1; ⋅) ;

5 mt = β1mt−1 + (1 − β1,t)gt ;

6 vt = β2vt−1 + (1 − β2)g2t ;

7 Vt = diag(vt) ;

8 η̂t = Clip(α/
√
Vt, ηl(t), ηu(t));

9 ηt = η̂t/
√
t;

10 θt = ∏diag(η−1t )(θt−1 − ηt ⊙mt);

11 end

12 Result: Final parameter estimate θt̃ ;

where Clip(.) is a clipping function that bounds the learning rate (α) to the interval

[ηl, ηu].

Algorithm 2: Batch Normalization

1 Input : Values of x for each activation over a single batch B = {x1, x2, x3, .., xN};

2 µB ←
1
N ∑

N
i=1 xi;

3 σ2
B ←

1
N ∑

N
i=1 (xi − µB)

2;

4 x̂i ←
xi−µB√
σ2
B+ε

;

5 yi ← γxi + β = BNγ,β(xi);

6 Result: yi = BNγ,β(xi)∶i=1,2,3,...,N ;
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Table C.1: Hyper-parameters
This table reports all hyper-parameters in the paper and the range in which they were chosen
via the validation set.

Name Range

l1 Penalty (λ1) (10−1,10−6)

Learning rate (10−2,10−4)

Batch size 10000
Epochs 100
Adabound parameters Default (amsbound=True)
Patience 5
Ensemble 100
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D Decomposing the out-of-sample R2

We start with the definition of the out-of-sample R2 (R2
OOS);

R2
OOS = 1 −

∑(t) ∈ oss(Rt −Rt,1)
2

∑(t) ∈ oss(Rt −Rt,2)
2

(D.1)

We define the relative stock return forecast of some firm i at time t, as the time t return

forecast for firm i minus the time t cross-sectional mean forecast.

Specifically, we re-define stock return forecast as follows:

r1,i,t = µ
RR
1,i + (N−1

t )∑
i∈t
r1,i,t + r̃

RR
1,i,t (D.2)

r2,i,t = µ
RR
2,i + (N−1

t )∑
i∈t
r1,i,t + r̃

RR
2,i,t (D.3)

This definition allows model one to improve upon forecast from model two along three

possible dimensions. First, model one can improve the forecasts of model two with respect

to predicting time-series variation in relative stock returns; r̃RR1,i,t vs. r̃RR2,i,t. Second, the

improvement maybe in predicting better the unconditional relative stock returns; µRR1,i

vs. µRR2,i . Finally, the improvement maybe in predicting the cross-sectional mean better;

(N−1
t )∑i∈t r1,i,t vs. (N−1

t )∑i∈t r1,i,t. The decomposition therefore allows us to directly

pin-point along which dimension one forecaster is doing better than another.

We claim that:

R2
OOS = R

2
TS +R

2
UN +R2

CS (D.4)

where R2
TS; captures the ability of model 1 to improve on forecasts from model 2 with

respect to predicting time series variation in relative stock returns, R2
UN ; captures the

ability of model 1 to improve on forecasts from model 2 with respect to predicting the

unconditional relative stock returns and RCS; cross-sectional mean dimension (time series

plus unconditional cross-sectional market return).
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We begin by expanding R2
TS:

R2
TS = 1 −

∑ ri,t − µ2,i,t,RR − r̃1,i,t,RR −∑t r2,i,t
2

∑(ri,t − r2,i,t)2
(D.5)

A1 = ri,t; B2 = µ2,i,t,RR; C1 = r̃1,i,t,RR; D2 = ∑ r2,i,t (D.6)

R2
TS = 1 −

∑(A1 −B2 −C1 −D2)
2

∑(ri,t − r2,i,t)
2 (D.7)

R2
TS = 1 −

∑(A2
1 − 2A1B2 − 2A1C1 − 2A1D2 +B2

2 + 2B2C1 + 2B2D2 +C2
1 + 2C1D2 +D2

2)

∑(ri,t − r2,i,t)
2

(D.8)

Expanding R2
UN :

R2
UN = 1 −

∑ ri,t − µ1,i,t,RR − r̃2,i,t,RR −∑t r2,i,t
2

∑(ri,t − r2,i,t)2
(D.9)

A1 = ri,t; B1 = µ1,i,t,RR; C2 = r̃2,i,t,RR; D2 = ∑ r2,i,t (D.10)

R2
UN = 1 −

∑(A1 −B1 −C2 −D2)
2

∑(ri,t − r2,i,t)
2 (D.11)

R2
UN = 1 −

∑(A2
1 − 2A1B1 − 2A1C2 − 2A1D2 +B2

1 + 2B2C2 + 2B1D2 +C2
2 + 2C2D2 +D2

2)

∑(ri,t − r2,i,t)
2

(D.12)

Expanding R2
CS:

R2
CS = 1 −

∑(ri,t − µ2,i,t,RR − r̃2,i,t,RR −∑t r1,i,t)
2

∑(ri,t − r2,i,t)
2 (D.13)

A1 = ri,t; B2 = µ2,i,t,RR; C2 = r̃2,i,t,RR; D1 = ∑ r1,i,t (D.14)

R2
CS = 1 −

∑(A1 −B2 −C2 −D1)
2

∑(ri,t − r2,i,t)2
(D.15)

R2
CS = 1 −

∑(A2
1 − 2A1B2 − 2A1C2 − 2A1D1 +B2

2 + 2B2C2 + 2B2D1 +C2
2 + 2C2D1 +D2

1)

∑(ri,t − r2,i,t)
2

(D.16)
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From the expansions above we have:

R2
TS +R

2
UN +R2

CS = ...

3 −
∑(A2

1 − 2A1B2 − 2A1C1 − 2A1D2 +B2
2 + 2B2C1 + 2B2D2 +C2

1 + 2C1D2 +D2
2)

∑(ri,t − r2,i,t)
2

−
∑(A2

1 − 2 A1B1 − 2A1C2 − 2A1D2 + B2
1 + 2 B1C2 + 2B1D2 + C2

2 + 2C2D2 + D2
2)

∑(ri,t − r2,i,t)
2

−
∑(A2

1 − 2 A1B2 − 2A1C2 − 2A1D1 + B2
2 + 2 B2C2 + 2B2D1 + C2

2 + 2C2D1 + D2
1)

∑(ri,t − r2,i,t)
2

Cross-products with C, where subscripts are different fall out because we define the

time varying relative return forecasts to have mean zero. We further assume; r̃2,i,t,RR�∑t r1,i,t

and r̃1,i,t,RR�∑t r2,i,t.

R2
TS +R

2
UN +R2

CS = ...

3 −
∑(A2

1 − 2A1C1 + C2
1 − 2 A1B1 + B2

1 − 2A1D1 + D2
1)

∑(ri,t − r2,i,t)
2

−
∑(A2

1 + 2C2D2 + D2
2 + B2

2 + 2 B2C2 + C2
2 − 2A1C2 − 2 A1B2 − 2A1D2)

∑(ri,t − r2,i,t)
2

−
∑(A2

1 + B2
2 + 2B2D2 + D2

2 + C2
2 − 2A1C2 − 2A1D2 − 2 A1B2)

∑(ri,t − r2,i,t)
2

Add (2B1C1 − 2B1C1), (2B1D1 − 2B1D1), and (2C1D1 − 2C1D1) to the first fraction,

(2A1D2 − 2A1D2) to the second fraction and (2B2C2 − 2B2C2) and (2C2D2 − 2C2D2) to

the last fraction.

R2
TS +R

2
UN +R2

CS = ...

3 − ∑
(A2

1−2A1C1+C2
1−2A1B1+B2

1−2A1D1+D2
1+(2B1C1−2B1C1)+(2B1D1−2B1D1)+(2C1D1−2C1D1))
∑(ri,t−r2,i,t)2

−
∑(A2

1+2C2D2+D2
2+B2

2+2B2C2+C2
2−2A1C2−2A1B2−2A1D2)+(2B2D2−2B2D2)
∑(ri,t−r2,i,t)2

−
∑(A2

1+B2
2+2B2D2+D2

2+C2
2−2A1C2−2A1D2−2A1B2)+(2B2C2−2B2C2)+(2C2D2−2C2D2)

∑(ri,t−r2,i,t)2
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R2
TS +R

2
UN +R2

CS = ...

3 − ∑
(A2

1−2A1C1+C2
1−2A1B1+B2

1−2A1D1+D2
1+2B1C1+2B1D1+2C1D1)

∑(ri,t−r2,i,t)2

−
∑(A2

1+2C2D2+D2
2+B2

2+2B2C2+C2
2−2A1C2−2A1B2−2A1D2+2B2D2)

∑(ri,t−r2,i,t)2

−
∑(A2

1+B2
2+2B2D2+D2

2+C2
2−2A1C2−2A1D2−2A1B2+2B2C2+2C2D2)
∑(ri,t−r2,i,t)2

−
∑(2B1C1+2B1D1+2C1D1+2B2D2+2B2D2+2B2C2+2C2D2)

∑(ri,t−r2,i,t)2

All cross-terms with C fall out:

R2
TS +R

2
UN +R2

CS = ...

3 − ∑(A1−B1−C1−D1)2

∑(ri,t−r2,i,t)2
−
∑(A1−B2−C2−D2)2

∑(ri,t−r2,i,t)2
−
∑(A1−B2−C2−D2)2

∑(ri,t−r2,i,t)2
−
∑(2B1D1+4B2D2)
∑(ri,t−r2,i,t)2

(D.17)

R2
TS +R

2
UN +R2

CS = ...

3 − ∑(A1−B1−C1−D1)2

∑(ri,t−r2,i,t)2
−
∑(A1−B2−C2−D2)2

∑(ri,t−r2,i,t)2
−
∑(A1−B2−C2−D2)2

∑(ri,t−r2,i,t)2

(D.18)

Where r2,i,t = B2 +C2 +D2 and r1,i,t = B1 +C1 +D1.

R2
TS +R

2
UN +R2

CS = 3 −
∑(A1 −B1 −C1 −D1)

2

∑(ri,t − r2,i,t)
2 − 1 − 1

Putting it all together we have:

R2 = R2
TS +R

2
UN +R2

CS = 1 −
∑(ri,t − r1,i,t)

2

∑(ri,t − r2,i,t)
2

where r̃t,i,1 and r̃t,i,2 have mean zero. It then follows that re-writing Rt,1 as (µi,1 − µi,1) +

r̃t,i,1 + µi,2, and comparing this to forecasts from model 2 allows us to focus on the time-

series variations in the forecasts. This is because, this specific re-write forces model 1

and model 2 to be equal in their ability to explain the unconditional stock return (all

equal to mu2), and the difference in forecasting ability now comes from r̃t,i,1 versus r̃t,i,2.

Re-writing model 1 forecasts as µi,1+(r̃t,i,1− r̃t,i,1)+ r̃t,i,2 forces the two models to match in
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explaining the time-series variation in returns (r̃t,i,2), and differ in their ability to explain

the unconditional stock return (µi,2 vs µi,1) over the sample.
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